期刊文献+

代数几何和表示论的一些新进展

New advances in algebraic geometry and representation theory
下载PDF
导出
摘要 双有理几何在双有理等价意义下对射影代数簇及其推广射影偶进行分类,是代数几何中的一个主要研究方向.代数几何与表示论具有不可分割的紧密联系,辛奇点就是同时涉及到这两个领域的一个重要研究课题.本文在对双有理几何中的基本概念进行简短的介绍后,探讨了典范体积的分布及应用,该不变量在射影偶的有界性问题上发挥关键作用.介绍了辛奇点的形变及量子化,及其在表示论中的应用. As a major research subfield of algebraic geometry,birational geometry studies the classification of projective algebraic varieties and their generalization as well as projective pairs under birational equivalence.After a brief introduction to the basic concepts in birational geometry,the first part of the survey explores the distribution and applications of the canonical volumes,which constitutes a key invariant in the boundedness problems of projective pairs.On the other hand,algebraic geometry and representation theory secure an inseparable connection,and symplectic singularities qualify as one of the important research topics that involve both fields.The second part of this article focuses on the deformation and quantization of symplectic singularities,as well as their applications in representation theory.
作者 刘文飞 余世霖 LIU Wenfei;YU Shilin(School of Mathematical Sciences,Xiamen University,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期948-962,共15页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(11971399,12131018,12001453) 福建省自然科学基金(2022J06005) 厦门大学校长基金(20720210006)。
关键词 对数一般型偶 有界性 典范体积 辛奇点 形变 半单群 约化群 幂零轨道 Harish-Chandra模 量子化 轨道方法 log general type pair boundednees canonical volume symplectic singularity deformation semisimple group reductive group nilpotent orbit Harish-Chandra module quantization orbit method
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部