期刊文献+

马尔可夫过程及其控制的理论和应用 被引量:1

Theory and applications of Markov processes and their control
下载PDF
导出
摘要 马尔可夫过程,也称作马氏过程,是在理论和应用上都非常重要的一类随机过程.本文综述了厦门大学数学科学学院概率论研究团队近10年来在马氏过程以及控制的相关理论和应用方面的研究成果. Markov processes,a.k.a.Markov chains,constitute a highly significant class of stochastic procedures in both theories and applications.In this paper,we provide an overview of research achievements in the field of Markov processes and their control,conducted by the Probability Theory Research Team of the School of Mathematical Sciences at Xiamen University over the past decade.
作者 陈娴 王文元 周达 CHEN Xian;WANG Wenyuan;ZHOU Da(School of Mathematical Sciences,Xiamen University,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期1045-1051,共7页 Journal of Xiamen University:Natural Science
关键词 马氏过程 保正型 随机博弈 风险灵敏性准则 列维过程 生物数学 Markov processes positivity preserving stochastic game risk-sensitive principle Levy process mathematical biology
  • 相关文献

参考文献2

二级参考文献15

  • 1Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994.
  • 2Ma, Z. M., Rockner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
  • 3Chen, Z. Q., Fukushima, M.: Symmetric Markov Processes, Time Change and Boundary Theory, Princeton University Press, to appear.
  • 4Ma, Z. M., Sun, W.: Some topics on Dirichlet forms. In: New Trend in Stochastic Analysis and Related Topics, a Volume in Honour of Professor K. D. Elworthy, 2010, to appear.
  • 5Ma, Z. M., Rockner, M.: Markov processes associated with positivity preserving coercive forms. Canad. J. Math., 47, 817-840 (1995).
  • 6Hu, Z. C., Ma, Z. M., Sun, W.: Extensions of Levy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting. J. Funct. Anal., 239, 179-213 (2006).
  • 7Blumenthal, R. M., Getoor, R. K.: Markov Processes and Potential Theory, Academic Press, New York, 1968.
  • 8Chung, K. L., Walsh, J. B.: Markov Processes, Brownian Motion, and Time Symmetry, Springer, Berlin, 2005.
  • 9~kushima, M.: Almost polar sets and an ergodic theorem. J. Math. Soc. Japan, 26, 17-32 (1974).
  • 10Chen, Z. Q., Fukushima, M., Ying, J. G.: Entrance law, exit system and Levy system of time-changed processes. Illinois J. Math., 50, 269-312 (2006).

共引文献8

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部