摘要
学习者的情感状态作为影响在线视频学习质量的重要因素,一直以来受到研究者的广泛关注。当前基于数据驱动的研究方法虽然可以提供在线视频学习过程中学习者认知行为的重要信息,但基于数据的在线视频学习过程中学习者情感状态及其影响因素的研究成果非常有限,情感状态的识别及其影响因素有待进一步研究。为此,文章首先开发了面部表情识别工具;接着通过准实验研究,检验面部表情识别工具的准确率;然后根据情感状态数据和SAM自我报告数据的分析,把握在线视频学习过程中学习者的情感状态变化;最后通过问卷调查和回顾性访谈,了解视频内容对学习者情感状态和满意度的影响。研究结果显示,面部表情识别工具整体上能够高度准确地识别出学习者的情感波动,视频内容对学习者的情感状态和满意度有极其显著的影响,并且情感状态在视频内容与满意度的作用过程中具有完全中介作用。通过研究,文章旨在为在线视频内容设计提供参考,促使学习者保持较高的唤醒度与愉悦度,改善其在线视频学习体验。
As an important factors affecting the quality of online video learning,learners’affective states have been widely concerned by researchers.Although current data-driven research methods can provide important information about learners’cognitive behaviors during online video learning process,the number of studies on learners’affective state based on data during online video learning process and the influencing factors are very limited.Therefore,this paper firstly developed the facial expression recognition tool and examined the accuracy of the facial expression recognition tool.Then,according to the analyses of affective state data and SAM(Self-Assessment Manikin)self-report data,the changes of learners’affective state during online video learning were grasped.Finally,questionnaire surveys and retrospective interviews were conducted to understand the influence of video content on learners’affective states and satisfaction.The research showed that the facial expression recognition tool could identify learners’emotional fluctuations with high accuracy on the whole,and video contents had a significant effect on learners’affective states and satisfaction,and the affective states had a full mediation effect on video content and satisfaction.Through the research,this paper aimed to provide reference for online video content design,promote learners to maintain a high level of arousal and pleasure,and improve their online video learning experience.
作者
单美贤
张瑞阳
SHAN Mei-xian;ZHANG Rui-yang(School of Education Science and Technology,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu,China 210023)
出处
《现代教育技术》
CSSCI
2023年第12期65-75,共11页
Modern Educational Technology
基金
2023年度江苏省高校哲学社会科学研究重大项目“i VR学习环境中学习者的认知与情感交互作用机制研究”(项目编号:2023SJZD030)
2022年江苏省研究生教育教学改革课题“高校研究生课程思政有效教学的实证研究”(项目编号:JGKT22_C021)的阶段性研究成果。
关键词
在线视频学习
面部表情识别
情感状态
视频内容
满意度
online video learning
facial expression recognition
affective states
video content
satisfaction