摘要
提出了基于边缘和云端部署相匹配大型语言模型(LLM)的内生智能网络架构NetGPT方案。边缘LLM可以有效地利用基于位置的信息进行个性化的补充,从而与云端LLM进行有效交互。通过在边缘和云端部署开源LLM,验证了NetGPT的可行性。认为面向NetGPT的内生智能网络架构的工作重点是通信和计算资源的深度集成以及AI逻辑工作流的灵活设计。认为NetGPT是一种可提供个性化的生成式服务的、有前途的内生智能网络架构。
The NetGPT framework,which is founded upon the alignment of large language models(LLMs)tailored for both edge and cloud de⁃ployments,is introduced.Edge-oriented LLMs harness location-based data to effectively personalize content augmentation,facilitating seamless interactions with their cloud-based counterparts.The viability of the NetGPT paradigm is empirically substantiated through the de⁃ployment of open-source LLMs at both the edge and cloud strata.It is believed that within the realm of endogenous intelligent network ar⁃chitectures designed to support NetGPT,the central emphasis rests on the profound integration of communication and computational re⁃sources,coupled with the adaptability in the design of AI logic workflows.
作者
陈宇轩
李荣鹏
张宏纲
CHEN Yuxuan;LI Rongpeng;ZHANG Honggang(Zhejiang University,Hangzhou 310007,China)
出处
《中兴通讯技术》
2023年第5期68-75,共8页
ZTE Technology Journal
基金
国家自然科学基金项目(62071425)
浙江省“领雁”计划项目(2022C01093)
浙江省杰出青年基金项目(LR23F010005)。
关键词
LLM
内生智能网络架构
云边协同
个性化生成服务
LLM
AI-native network architecture
edge-cloud collaboration
personalized generative services