期刊文献+

A hybrid-model optimization algorithm based on the Gaussian process and particle swarm optimization for mixed-variable CNN hyperparameter automatic search

原文传递
导出
摘要 Convolutional neural networks(CNNs)have been developed quickly in many real-world fields.However,CNN’s performance depends heavily on its hyperparameters,while finding suitable hyperparameters for CNNs working in application fields is challenging for three reasons:(1)the problem of mixed-variable encoding for different types of hyperparameters in CNNs,(2)expensive computational costs in evaluating candidate hyperparameter configuration,and(3)the problem of ensuring convergence rates and model performance during hyperparameter search.To overcome these problems and challenges,a hybrid-model optimization algorithm is proposed in this paper to search suitable hyperparameter configurations automatically based on the Gaussian process and particle swarm optimization(GPPSO)algorithm.First,a new encoding method is designed to efficiently deal with the CNN hyperparameter mixed-variable problem.Second,a hybrid-surrogate-assisted model is proposed to reduce the high cost of evaluating candidate hyperparameter configurations.Third,a novel activation function is suggested to improve the model performance and ensure the convergence rate.Intensive experiments are performed on image-classification benchmark datasets to demonstrate the superior performance of GPPSO over state-of-the-art methods.Moreover,a case study on metal fracture diagnosis is carried out to evaluate the GPPSO algorithm performance in practical applications.Experimental results demonstrate the effectiveness and efficiency of GPPSO,achieving accuracy of 95.26%and 76.36%only through 0.04 and 1.70 GPU days on the CIFAR-10 and CIFAR-100 datasets,respectively.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1557-1573,共17页 信息与电子工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.62073056 and 61876029) the Applied Basic Research Project of Liaoning Province,China (No.2023JH2/101300207) the Key Field Innovation Team Project of Dalian,China (No.2021RT14)。
  • 相关文献

参考文献1

二级参考文献6

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部