期刊文献+

Dynamic parameterized learning for unsupervised domain adaptation

原文传递
导出
摘要 Unsupervised domain adaptation enables neural networks to transfer from a labeled source domain to an unlabeled target domain by learning domain-invariant representations.Recent approaches achieve this by directly matching the marginal distributions of these two domains.Most of them,however,ignore exploration of the dynamic trade-off between domain alignment and semantic discrimination learning,thus rendering them susceptible to the problems of negative transfer and outlier samples.To address these issues,we introduce the dynamic parameterized learning framework.First,by exploring domain-level semantic knowledge,the dynamic alignment parameter is proposed,to adaptively adjust the optimization steps of domain alignment and semantic discrimination learning.Besides,for obtaining semantic-discriminative and domain-invariant representations,we propose to align training trajectories on both source and target domains.Comprehensive experiments are conducted to validate the effectiveness of the proposed methods,and extensive comparisons are conducted on seven datasets of three visual tasks to demonstrate their practicability.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1616-1632,共17页 信息与电子工程前沿(英文版)
基金 Project supported by the National Natural Science Foundation of China (No.61932009) the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study,China。
  • 相关文献

参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部