期刊文献+

Development and assessment of algorithms for DEM-LES simulations of fluidized bed

原文传递
导出
摘要 The use of high-fidelity Discrete Element Method(DEM)coupled with Computational Fluid Dynamics(CFD)for particle-scale simulations demands extensive simulation times and restricts application to small particulate systems.DEM-CFD simulations require good performance and satisfactory scalability on high-performance computing platforms.A reliable parallel computing strategy must be developed to calculate the collision forces,since collisions can occur between particles that are not on the same processor,or even across processors whose domains are disjoint.The present paper describes a parallelization technique and a numerical verification study based on a number of tests that allow for the assessment of the numerical performance of DEM used in conjunction with Large-Eddy Simulation(LES)to model dense flows in fluidized beds.The fluid phase is computed through solving the volume-averaged four-way coupling Navier-Stokes equations,in which the Smagorinsky sub-grid scale tensor model is used.Furthermore,the performance of Sub-Grid Scale(SGS)turbulence models applied to Fluidized Bed Reactor(FBR)configurations has been assessed and compared.The developed numerical solver represents an interesting combination of techniques that work well for the present purpose of studying particle formation in fluidized beds.
机构地区 UM
出处 《Particuology》 SCIE EI CSCD 2023年第12期241-257,共17页 颗粒学报(英文版)
基金 This work was supported by OcP Group(Morocco)。
  • 相关文献

参考文献2

二级参考文献26

  • 1Anderson, T. B., & Jackson, R. (1967). A fluid mechanical description of fluidized beds. Industrial & Engineering Chemistry Fundamentals, 6, 527- 539.
  • 2Beetstra, R, van der Hoef, M. A., & Kuipers, J. A. M. (2007a). Numerical study of segregations using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations. Chemical Engineering Science, 62, 246- 255.
  • 3Beetstra, R, van der Hoef, M. A.. & Kuipers, J. A. M. (2007b). Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53, 489-501.
  • 4Cundall, P. A., & Strack, C. D. L. (1979). A discrete numerical-model for granular assemblies. Geotechnique, 29, 47-65.
  • 5Davidson, J. F., & Harrison,-D. (1963). Fluidized particles. Cambridge: Cambridge University Press.
  • 6DiFelice, R. (1994). The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 29, 153-159.
  • 7Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89-94.
  • 8Goldhirsch, I., & Zanetti, G. (1993). Clustering instability in dissipative gases. Physical Review Letters, 70, 1619-1622.
  • 9Holland. D. J., Muller, C. R., Dennis, J. S., Gladden. L. E, & Sederman, A. J. (2008). spatially resolved measurement of anisotropic granular temperature in gasfluidized beds. Powder Technology, 171-181.
  • 10Holland, D.J., Muller, C. R., Dennis, J. S., Gladden, L F., & Sederman, A.J. (in press). Measuring voidage in a gas-fluidized bed: A practicable approach using magnetic resonance, AIChE Journal.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部