摘要
聚合酶链式反应(PCR)分析仪以样品块(Block)温度为控制对象实现样本温度控制,易产生热滞效应。为减小管内迟滞,缩短样本的变温时间,该研究在利用有限元分析技术建立单孔样本热传导模型的基础上,构建一种融合初始温度-目标温度-等效热阻的三参数模型预测管内实际温度,实现PCR过程管内温度实时跟踪。根据模型精准预测管内温度,对样品块进行精准快速控温,大幅缩短升降温时间,降低了管内样品的传热迟滞。实验结果表明,与管内实际温度相比,管内样品温度预测方法误差低于±1.5℃;样品块温度控制目标曲线优化后,管内温度迟滞时间缩短了27%以上。该文提出精准控制温度过冲的优化方法在保证管内样本温度的基础上显著缩短了PCR热循环整体时间,有利于实现更快速、更精准的核酸定量检测结果。
The polymerase chain reaction(PCR)analyzer takes the sample block temperature as the control object to control the sample temperature,resulting in thermal hysteresis.To reduce the thermal hysteresis and shorten the temperature change time of sample,this paper is based on the establishment of single-hole sample thermal conduction model by the finite element analysis technique,a three-parameter model that fused the initial temperature-target temperature-equivalent thermal resistance is constructed to predicted the sample temperature in tube and achieve real-time temperature tracking in the PCR process.According to the predicted temperature in the tube,the temperature of the sample block is accurately and quickly controlled,which greatly shorten the heating and cooling time and reduce the heat transfer hysteresis of the sample in the tube.The experimental results show that compared with the actual temperature in the tube,the error of the method is less than±1.5℃.The temperature hysteresis time in tube is reduced by more than 27%after optimizing the target curve of sample block temperature.The optimization method of accurate control of the temperature overshoot in this paper significantly shorted the overall PCR thermal cycle time on the basis of maintaining the sample temperature in the tube,which was conducive to achieving faster and more accurate nucleic acid quantitative detection results.
作者
张月业
姚佳
张芷齐
李金泽
周连群
ZHANG Yueye;YAO Jia;ZHANG Zhiqi;LI Jinze;ZHOU Lianqun(School of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022,China;Key Laboratory of Bio-medical Diagnosis,Suzhou Institude of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou 215163,China)
出处
《中国测试》
CAS
北大核心
2023年第11期150-156,共7页
China Measurement & Test
基金
国家重点研发计划资助项目(2022YFC2409300)
江苏省社会发展重点研究开发项目(BE2020768)
中国科学院生物医学检验技术重点实验室开放课题资助项目(A2023F001)。
关键词
聚合酶链式反应
有限元分析
温度预测
温度优化
polymerase chain reaction
finite element analysis
temperature prediction
temperature optimization