期刊文献+

移动边缘网络中基于强化学习的部分卸载分析

Research on partial offloading based on reinforcement learning in mobile edge networks
下载PDF
导出
摘要 为解决边缘计算环境中多用户卸载问题,提出了一种基于强化学习的部分任务卸载方法,将二进制计算卸载扩展到连续动作域,从而更好地达到最小的时延,即采用Q-learning算法进行离散卸载决策,并基于深度确定性策略梯度算法(deep deterministic policy gradient algorithm for partial-offloading,DDPG-PO)连续卸载决策.实验结果表明所上述方法相较现有方法,提高了决策的准确性和实效性,能更好地降低时延. In order to solve the problem of multi-user offloading in edge computing environment,a partial task offloading method based on Reinforcement Learning is proposed,which extends the binary computing offloading to the continuous action domain,so as to better achieve the minimum latency.The Q-learning algorithm is used to make discrete unloading decisions,and the DDPG-PO(deep deterministic policy gradient algorithm for partial-offloading,DDPG-PO)is used to make continuous offloading decisions.The experimental results show that the above methods improve the accuracy and effectiveness of decision-making compared to existing methods,and can better reduce latency.
作者 王景弘 陈昱 胡建强 WANG Jinghong;CHEN Yu;HU Jianqiang(College of Computer and Information Engineering,Xiamen University of Technology,Xiamen,Fujian 361024,China)
出处 《闽南师范大学学报(自然科学版)》 2023年第4期62-72,共11页 Journal of Minnan Normal University:Natural Science
基金 福建省自然科学基金(2023J011426) 中国高校产学研创新基金新一代信息技术创新项目(2020ITA03015) 厦门理工学院科研攀登计划(2020044)。
关键词 部分任务卸载 强化学习 移动边缘网络 Q-learning算法 partial offloading reinforcement learning mobile edge computing Q-learning algorithm
  • 相关文献

参考文献1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部