期刊文献+

幂指数棱台声子晶体对薄板振动弯曲波的调控特性研究

Flexural wave manipulation in thin-slab structure with power exponent prismatic phononic crystals
下载PDF
导出
摘要 针对薄板结构的振动控制,提出了一种幂指数棱台声子晶体构型,并对其带隙的产生机理和影响因素进行了分析,结果表明提出的幂指数棱台声子晶体具有三个弯曲波完全带隙,其中第二带隙宽度可达850 Hz。联合数值仿真和试验方法对声子晶体的弯曲波带隙进行了验证。随着棱台结构高度的增加,三个带隙的带宽扩大。棱台的幂函数幂次升高会使带隙的起始频率与终止频率降低,而边缘厚度的增高会弱化能量聚焦效应使带隙的宽度逐渐变窄。具有线缺陷的声子晶体板可使带隙频段内的弯曲波沿着设计路径传播。 The thin-slab structure with a new form of phononic crystals is constructed.The mechanism and influencing factors of band gap are analyzed.The influence of power change on vibration reduction of phononic crystal plate is studied.Three complete phononic band gaps are obtained.The bandwidth of the second band gap reaches 850 Hz.As the height of the prism increases,the bandwidth of the three bandgap begins to widen.The power of the prism increases,the start and end frequencies of the band gap decrease,while the increase of the edge thickness weakens the energy focusing effect and gradually narrows the bandwidth of the band gap.By using the linear defect and band gaps of phononic crystals,the waveguide effect of thin-slab structure with phononic crystals is achieved.The study provides a new concept to manipulate the flexural wave of thin-slab structure.
作者 金星 张振华 JIN Xing;ZHANG Zhen-hua(College of Naval Architecture and Ocean,Naval University of Engineering,Wuhan 430033,China)
出处 《振动工程学报》 EI CSCD 北大核心 2023年第6期1687-1694,共8页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51879270)。
关键词 振动控制 薄板 声子晶体 完全带隙 弯曲波 vibration control thin slab phononic crystals complete band gap flexural wave
  • 相关文献

参考文献5

二级参考文献20

  • 1赵芳,苑立波.二维声子晶体同质位错结缺陷态特性[J].物理学报,2006,55(2):517-520. 被引量:11
  • 2王刚,邵丽晖,刘耀宗,温激鸿.Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals[J].Chinese Physics B,2006,15(8):1843-1848. 被引量:13
  • 3Pillai A M, Deenadayalan E. A Review of Acoustic Eneigy Harvesting[ J]. International Journal of Precision Engineering and Manufacturingr2014,15(5):949-965.
  • 4Khan F U. State of the Art in Acoustic Energy Harvesting[ J]. Journal of Micromechanics and Microengineering,2015,25(2) :023001.
  • 5Liu F,Phipps A, Horowitz S, et al. Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator[ J ] . Journal of the AcousticalSociety o/America,2008,123(4) :1983-1990.
  • 6Li B, Laviage A, You J H, et al. Harvesting Low-Frequency Acoustic Energy Using Multiple PVDF Beam Arrays in Quarter-Wavelength AcousticResonator[ J] . Applied Acoustics t20\3 ,74( 11 ) : 1271-1278.
  • 7Peng X, Wen Y, Li P, et al. A Wideband Acoustic Energy Harvester Using a Three Degree-of-Freedom Architecture[J]. Applied Physics Letters,2013,103(16) :164106.
  • 8Wu L Y, Chen L W, Liu Q M. Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal [ J 1. Smart Materials and Structures ,2010, 19(4) :045016-2.
  • 9Wu L Y,Chen L W, Liu Q M. Experimental Investigation of the Acoustic Pressure in Cavity of Two-Dimensional Phononic Crystals[ J]. PhysicaB: Physics of Condensed2009,404( 12) : 1766-1770.
  • 10Wu L Y, Chen L W, Liu Q M. Acoustic Pressure in Cavity of Vjuiously Sized Two-Dimensional Sonic Crystals with Various Filling Fractions[ J].Physics Ie.ersA,2009,373(12) :1189-1195.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部