期刊文献+

基于大数据分析的国有企业业财融合优化策略研究 被引量:6

Research on Optimization Strategy of Industry-Finance Integration of State-Owned Enterprises Based on Big Data Analys is
下载PDF
导出
摘要 研究聚焦于国有企业业财融合在大数据分析背景下的优化策略。首先,文章概述了业财融合的概念以及大数据分析的发展现状。其次,文章深入探讨了国有企业业财融合的发展现状及其存在的主要问题,如数据碎片化、风险管理不足及资源配置不当。在此基础上,文章提出了基于大数据分析的优化策略,包括数据整合促进协同发展、加强风险管理与资源优化和成本控制。通过数据整合,可以有效促进业务和财务之间的协同,风险管理则帮助企业预防和应对潜在风险,而资源优化与成本控制旨在提高资源使用效率和降低运营成本。综合文章的研究成果来看,基于大数据的优化策略能助力国有企业加强业财融合,提升经营效率和竞争力。 This study focuses on the optimization strategy of industry-finance integration of state-owned enterprises under the background of big data analysis.First of all,this paper summarizes the concept of industry-finance integration and the development status of big data analysis.Furthermore,this paper deeply discusses the development status and main problems of the integration of industry and finance in state-owned enterprises,such as data fragmentation,insufficient risk management and improper resource allocation.On this basis,this paper puts forward optimization strategies based on big data analysis,including data integration to promote coordinated development,strengthening risk management,resource optimization and cost control.Through data integration,the collaboration between business and finance can be effectively promoted.Risk management helps enterprises to prevent and deal with potential risks,while resource optimization and cost control aim to improve resource utilization efficiency and reduce operating costs.Based on the research results of this paper,the optimization strategy based on big data can help state-owned enterprises strengthen the integration of industry and finance,and improve their operating efficiency and competitiveness.
作者 韩东梅 HAN Dongmei(Aerospace Information Jiangsu Co.,Ltd.,Nanjing 210043,China)
出处 《商业观察》 2023年第36期37-40,共4页 BUSINESS OBSERVATION
关键词 大数据分析 国有企业 业财融合 big data analysis state-owned enterprises integration of ind ustry and finance
  • 相关文献

参考文献3

二级参考文献24

共引文献20

同被引文献20

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部