期刊文献+

一种改进SLO的多目标服务优化组合方法

A Multi-objective Service Combination Optimization Method with Improved SLO
下载PDF
导出
摘要 服务优化组合旨在满足用户需求的前提下找到原子服务的最佳组合。针对目前求解服务优化组合问题效率低、寻优质量低的问题,提出了一种基于改进社会学习优化算法的多目标服务优化组合方法(ISLO-MOSCO)。结合多目标服务优化组合问题的特点,设计了服务组合实数编码模型,对社会学习优化算法的关键操作算子提出了改进,引入了Sigmoid扰动学习因子;结合改进的算法,提出了一种面向多目标服务优化组合问题的求解方法;大量实验验证了所提方法求解多目标服务优化组合问题的有效性与优越性。 Service composition optimization aims to find the best combination of atomic services that meet user requirements.A multi-objective service composition optimization method based on an improved social learning optimization algorithm(ISLO-MOSCO)is proposed to address the current problems of low efficiency and low seeking quality in solving service composition optimization problems.Firstly,combining the characteristics of the multi-objective service composition optimization problem,a service composition real number encoding model is designed,and the key operation operator of the social learning optimization algorithm is proposed to be improved by introducing a Sigmoid perturbation learning factor.Secondly,a solution method for multi-objective service composition optimization problems is proposed in combination with the improved algorithm.Finally,the effectiveness and superiority of the proposed method for solving multi-objective service composition optimization problems are verified by extensive experiments.
作者 海燕 徐芯 刘志中 HAI Yan;XU Xin;LIU Zhizhong(College of Information Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450046,China;College of Computer and Control Engineering,Yantai University,Yantai Shandong 264005,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2023年第6期1-5,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金资助项目(61872126,62273290) 山东省自然科学基金重点项目(ZR2020KF019)。
关键词 服务组合 多目标优化 社会学习优化算法 QOS service composition multi-objective optimization social learning optimization algorithm QoS
  • 相关文献

参考文献6

二级参考文献33

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 3Zeng Liangzhao, Benatallah Boualem, et al. QoS-aware mid- dleware for Web services composition. IEEE Transactions on Software Engineering, 2004, 30(5): 311-326.
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory//Proceedings of the 7th International Symposium on Micro Machine and Human Science. Piscataway: IEEE Service Center, 1995:39-43.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolu- tionary Computation. Anchorage, AK, 1998:69-73.
  • 6Shi Y, Eberhart R C. Parameter selection in particle swarm optimization//Proceedings of the 7th International Confer- ence on Evolutionary Programming. Berlin: Springer, 1998: 591-600.
  • 7Poli Riccardo, Kennedy James, Blackwell Tim. Particle swarm optimization: An overview. Swarm Intelligence, 2007, 1(1): 33-57.
  • 8王创伟,钱雪忠.蚁群算法在Web服务组合问题中的应用研究[J].计算机工程与设计,2007,28(24):5912-5914. 被引量:11
  • 9倪晚成,刘连臣,吴澄.Web服务组合方法综述[J].计算机工程,2008,34(4):79-81. 被引量:63
  • 10于明远,朱艺华,梁荣华.基于混合微粒群算法的网格服务工作流调度[J].华中科技大学学报(自然科学版),2008,36(4):45-47. 被引量:9

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部