期刊文献+

基于改进决策树的充电桩故障预测方法 被引量:1

Fault Prediction Method of Charging Pile Based on Improved Decision Tree
下载PDF
导出
摘要 为了保证电动汽车充电桩的安全稳定运行,提高充电桩故障预测准确性,提出一种基于改进决策树的充电桩故障预测方法。首先,对充电桩的运行参数进行预处理,将处理后的数据作为模型输入;其次,建立基于粒子群算法改进的决策树的充电桩故障预测模型;最后,采用真实充电桩故障的数据集进行仿真分析。仿真结果表明,所提出的方法能有效提高模型预测准确性。 In order to ensure the safe and stable operation of electric vehicle charging piles and improve the accuracy of charging pile fault prediction,a charging pile fault prediction method based on improved decision tree was proposed.Firstly,the operation parameters of the charging pile were preprocessed,and the processed data was used as the model input;secondly,the fault prediction model of charging pile was established based on the improved decision tree of particle swarm optimization;finally,the data set of real charging pile fault was used for simulation analysis.The simulation results show that the proposed method can effectively improve the accuracy of model prediction.
作者 袁单 刘鸿鹏 陈良亮 窦真兰 Yuan Dan;Liu Hongpeng;Chen Liangliang;Dou Zhenlan(Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,under Ministry of Education,Northeast China Electric Power University,Jilin Jilin 132012,China;NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing Jiangsu 211106,China;State Grid Shanghai Municipal Electric Power Company,Shanghai 200433,China)
出处 《电气自动化》 2023年第6期92-94,103,共4页 Electrical Automation
基金 国家电网有限公司科技项目资助(52094021N00S)。
关键词 充电桩 数据挖掘 故障预测 决策树 粒子群算法 charging pile data mining fault prediction decision tree particle swarm algorithm
  • 相关文献

参考文献6

二级参考文献39

共引文献46

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部