期刊文献+

智慧物流政策的文本量化分析——基于中央层面政策对比天津市、上海市政策

Analysis of Text Quantification on Smart Logistics Policies:Compare the Policies of Tianjin and Shanghai Based on the Policies of the Central Government
下载PDF
导出
摘要 智慧物流发展需要切实可行的政策体系支持,政策文本量化研究能够为智慧物流政策的制定与完善提供决策依据及优化建议。文章以2018-2022年中央出台的政策为基准,横向对比天津市和上海市的14项智慧物流政策为研究对象,采用文本挖掘的方式提取政策中的若干关键词,从政策属性、政策措施和政策对象三个角度构建政策评价的指标体系与PCM指数评价模型,对两直辖市出台的典型智慧物流政策进行量化评价分析。从宏观上来说上海市政策和天津市政策均属于良好政策,政策设计合理。具体地,天津市的政策更加注重细节,上海市政策目的性更强。文章可以为其他地区的智慧物流政策出台与引导方向提供借鉴与参考。 The development of smart logistics needs the support of practical policy system.Quantitative research of policy text can provide decision-making basis and optimization suggestions for the formulation and improvement of smart logistics policies.Based on the policies issued by the central government from 2018 to 2022,this paper makes a horizontal comparison of 14 smart logistics policies of Tianjin and Shanghai as the research object,adopts text mining to extract several key words in the policies,and constructs an index system and PMC index evaluation model for policy evaluation from three perspectives:policy attributes,policy measures and policy objects.The paper makes quantitative evaluation and analysis of the typical smart logistics policies issued by the two municipalities.From the macro point of view,the policies of Shanghai and Tianjin are good policies,and the policy design is reasonable.Specifically,Tianjin s policies pay more attention to details,while Shanghai s policies are more purposeful.This study can provide reference for other regions to introduce and guide smart logistics policies.
作者 李波 赵明宇 郭文雅 宋佳欢 LI Bo;ZHAO Ming-yu;GUO Wen-ya;SONG Jia-huan(Tianjin University,Tianjin 300072)
机构地区 天津大学
出处 《供应链管理》 2023年第12期9-23,共15页 SUPPLY CHAIN MANAGEMENT
基金 中国工程院战略研究与咨询项目与天津市科技计划项目“高质量发展背景下天津市智慧物流产业布局与发展路径研究”(22ZLGCGX00060)。
关键词 智慧物流政策 文本挖掘 PMC指数模型 政策量化 政策评价 smart logistics policy text mining PMC index model policy quantification policy evaluation
  • 相关文献

参考文献17

二级参考文献283

共引文献523

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部