期刊文献+

基于机器学习算法的光伏组串故障诊断技术研究 被引量:1

Research on Photovoltaic String Fault Diagnosis Technology Based on Machine Learning Algorithms
下载PDF
导出
摘要 常规缺陷检测方法主要依据光伏电站面板的异常状态数据来检测面板缺陷,但检测结果存在一定的随机性,导致缺陷检测结果不够清晰。因此,本文采用了无人机影像技术来设计光伏电站面板缺陷检测方法。首先,本文从图像中提取出缺陷特征,然后结合无人机影像技术,通过灰度共生矩阵将缺陷图像与完整图像分开,以识别可见光图像中的缺陷位置。接着,我们将缺陷图像放入光伏面板缺陷检测模型中进行进一步检测,使图像纹理特征和形状特征高度融合,从而实现光伏电站面板缺陷的精准检测。最后,本文采用对比实验的方式验证了该检测方法具有检测置信度和检测精准度更高的优点,使其能够应用于实际生活中。 Traditional defect detection methods for photovoltaic(PV)panels rely on abnormal state data of PV station panels,but the results often suffer from randomness,leading to unclear defect detection outcomes.Addressing this issue,this paper designs a PV panel defect detection method using unmanned aerial vehicle(UAV)imaging technology.Initially,defect features are extracted from images.Combining UAV imaging technology,the gray-level co-occurrence matrix is employed to distinguish defect images from complete ones,identifying defect locations in visible light images.Subsequently,these defect images are further analyzed using a PV panel defect detection model,which integrates image texture and shape features for precise defect identification in PV station panels.Finally,comparative experiments demonstrate that this detection method offers higher confidence and accuracy in detection,making it applicable in real-world scenarios.
作者 骆元鹏 付江缺 李双江 李红明 张奇 张文成 LUO Yuanpeng;FU Jiangque;LI Shuangjiang;LI Hongming;ZHANG Qi;ZHANG Wencheng(Central Southern China Electric Power Design Institute Co.,Ltd.,China Power Engineering Consulting Group,Wuhan 430000,Hubei,China)
出处 《电力大数据》 2023年第10期34-41,共8页 Power Systems and Big Data
关键词 无人机影像技术 光伏电站 面板 缺陷 检测方法 UAV imaging technology photovoltaic power station panel defect detection method
  • 相关文献

参考文献19

二级参考文献200

  • 1秦伟刚.光电耦合隔离技术与应用[J].仪器仪表学报,2006,27(z3):2603-2604. 被引量:26
  • 2郑诗程,夏伟.三相光伏并网系统的控制策略研究[J].电气技术,2007,8(3):43-46. 被引量:11
  • 3李立伟,王英,包书哲.光伏电站智能监控系统的研制[J].电源技术,2007,31(1):76-79. 被引量:31
  • 4赵晶,赵争鸣,周德佳.太阳能光伏发电技术现状及其发展[J].电气应用,2007,26(10):6-10. 被引量:115
  • 5Akisawa A, Hiramatsu M, Ozaki K. Design of dome-shaped non-imaging fresnel lenses taking chromatic aberration into account [J]. Solar Energy, 2012(86): 877-885.
  • 6Alexandru C, Pozna C. Simulation of a dual-axis solar tracker for improving the performance of a photovoltaic panel[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224(6): 797-811.
  • 7Lee C Y, Chou P C, Chiang C M, et al. Sun tracking systems: a review[J]. Sensors, 2009(9): 3875-3890.
  • 8Bortolini M, Gamberi M, Graziani A, et al. Hybrid strategy for bi-axial solar tracking system[J]. Journal of Control Engineering and Technology, 2012, 2(4): 130-142.
  • 9曹寅翔,顾菊平,茅靖峰,等.基于LabVIEW的聚光跟踪型光伏发电无线监控系统设计[c]//第三十一届中国控制会议.合肥:中国系统工程学会,系统科学研究所,2012:25—27.
  • 10American Society of Heating, Refrigerating and Air-conditioning Engineers. ASHRAE standard 93-2003 method of testing to determinethe thermal performance of solar collectors[S]. Atlanta: INC, 2003.

共引文献89

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部