期刊文献+

基于深度学习的安全帽识别在海上油田智能化中应用

Application of Helmet Recognition Based on Deep Learning in Intelligent Safety Monitoring of Offshore Platforms
下载PDF
导出
摘要 图像识别技术主要利用计算机对人工识别方式进行替代,已逐渐广泛运用于物理信息识别领域,包括信息获取、信息处理、图像分类、分类设计等。计算机技术的快速发展也推动了图像识别技术在石油工业领域的应用。为此介绍了图像识别算法模型在海上平台智能安全监控中的应用,并对智能安全识别的实践成果进行评估。通过人工智能自动识别不安全行为,能有效提高识别的及时性和准确性,提高工作效率,实现井口平台无人驻守远程操作。 Image recognition technology mainly uses computer-aided identification to replace manual recognition,and has gradually been widely used in the field of physical information recognition,including information acquisition,information processing,image classification,classified design,and so on.The rapid development of computer technology has also promoted the application of image recognition technology in the field of petroleum industry.This article mainly studies the application of image recognition algorithm models in intelligent safety monitoring of offshore platforms,and evaluates the practical results of intelligent safety identification.Automatic identification of unsafe behaviors through artificial intelligence can effectively improve timeliness and accuracy of identification,increase work efficiency,and promote unmanned remote operation and management of wellhead platforms.
作者 邓增利 吴南旭 鲁小琴 DENG Zengli;WU Nanxu;LU Xiaoqin(CNOOC China Limited,Zhanjiang Branch,Zhanjiang 524057,China)
出处 《电工技术》 2023年第21期45-48,共4页 Electric Engineering
关键词 智能安全 智能图像识别 算法模型 intelligent security intelligent image recognition algorithm model
  • 相关文献

参考文献7

二级参考文献25

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部