期刊文献+

基于1D-CNN和SWLSTM的风电轴承故障诊断方法 被引量:2

WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON 1D-CNN AND SWLSTM
下载PDF
导出
摘要 针对风电机组滚动轴承故障特征微弱,对应的信号具有非线性、非平稳性并含有噪声干扰的问题,以及信号本身具有空间和时域信息的特点,提出一种基于一维卷积神经网络(One-Dimensional Convolutional Neural Network,1DCNN)和共享权重长短时记忆网络(Shared Weight Long Short-Term Memory Network,SWLSTM)进行空时融合的风电机组滚动轴承故障诊断的卷积共享权重记忆网络(Convolutional Shared Weight Long Short-Term Memory Network,CSWLSTM)。使用美国西储大学滚动轴承数据集进行验证,相较于具有相同结构的卷积长短时记忆网络(Convolutional Long Short-Term Memory Network,CLSTM)模型和卷积门控循环网络(Convolutional Gated Recurrent Unit Network,CGRU)模型,CSWLSTM模型在训练时间上分别降低了39.9%和19.0%,模型参数量分别降低了63.3%和53.4%。在测试集上使用的分类评价指标准确率分别提升了1.0%和1.5%,精确率分别提升了1.0%和1.7%,召回率分别提升了0.9%和1.0%。仿真实验结果表明,所提出的CSWLSTM模型在风电机组滚动轴承故障诊断方面具有较好的应用潜力。 Aiming at the subtle fault features of the wind turbines rolling bearing,the fault signal is nonlinear,nonstationary and contains noise interference,and the fault signal has the characteristics of space and time feature information,a space-time fusion convolutional shared weight long short-term memory network(CSWLSTM)model based on one-dimensional convolutional neural network(1D-CNN)and the shared weight long short-term memory network(SWLSTM)was proposed for wind turbine rolling bearing fault diagnosis.Using the Western Reserve University rolling bearing dataset for experiment,compared with the convolutional long short-term memory network(CLSTM)model and convolutional gated recurrent unit network(CGRU)model with the same structure,CSWLSTM model had a significant improvement in the convergence of the training dataset.The training time was reduced by 39.9%and 19.0%,respectively.The model parameters were reduced by 63.3%and 53.4%,respectively.The accuracy was increased by 1.0%and 1.5%,the precision rate was increased by 1.0%and 1.7%,and the recall rate was increased by 0.9%and 1.0%on the test dataset,respectively.The simulation experiment results show that the CSWLSTM model has good application potential in the wind turbine rolling bearing fault diagnosis.
作者 荆东星 陈杨晖 全哲 JING DongXing;CHEN YangHui;QUAN Zhe(School of Information and Intelligence,Xiangxi National Vocational and Technical College,Xiangxi 416000,China;National Supercomputing Center of Changsha,College of Computer Science and Engineering,Hunan University,Changsha 410082,China)
出处 《机械强度》 CAS CSCD 北大核心 2023年第6期1309-1317,共9页 Journal of Mechanical Strength
基金 国防科技基础加强计划173重点基础研究项目(2020-JCJQ-ZD-029) 2021年湘西民族职业技术学院院级课题(K202108) 湘西民族职业技术学院科研团队专项课题(KYZX01)资助。
关键词 风电 故障诊断 滚动轴承 共享权重长短时记忆网络 一维卷积神经网络 Wind power Fault diagnosis Rolling bearing Shared weight long short-term memory network One-dimensional convolutional neural network
  • 相关文献

参考文献12

二级参考文献178

  • 1杨青,孙佰聪,朱美臣,杨青川,刘念.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. 被引量:13
  • 2陶雪娇,胡晓峰,刘洋.大数据研究综述[J].系统仿真学报,2013,25(S1):142-146. 被引量:344
  • 3丛爽,戴谊.递归神经网络的结构研究[J].计算机应用,2004,24(8):18-20. 被引量:22
  • 4陈如清.两种基于神经网络的故障诊断方法[J].中国电机工程学报,2005,25(16):112-115. 被引量:20
  • 5Song Tiecheng, Li Hongliang. Wave LBP based hier- archical features for image classification[J]. Pattern Recognition Letters, 2013, 34: 1323-1328.
  • 6Loris N, Alessandra L, Sheryl B. Survey on LBP based texture descriptors for image classification[J]. Expert Systems with Applications, 2012, 39: 3634- 3641.
  • 7Heikkila M, Pietikainen M. Description of interest re- gions with center-symmetric local binary patterns [C] //Processings of the 5th Conference on Computer Vi- sion, Graphics and Image Processing. Madurai, India: [s. n. ], 2006: 58-69.
  • 8Li Bing, Zhang Peilin, Liu Dongsheng, et al. Feature extraction for rolling element bearing fault diagnosis u- tilizing generalized S transform and two-dimensional non-negative matrix factorization[J]. Journal of Sound and Vibration, 2011, 330: 2388-2399.
  • 9Djurovi I, Sejdi E, Jiang J. Frequency-based window width optimization for S-transform[J]. AEU-Interna- tional Journal of Electronics and Communications, 2008, 62(4): 245-250.
  • 10Ojala T, Pietikainen M, Maeenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.

共引文献1057

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部