期刊文献+

基于半监督学习聚类数据标注的多功能雷达工作模式识别

Multi-function radar work mode recognition based on clustering data annotation
下载PDF
导出
摘要 对多功能相控阵雷达工作模式准确识别可为电子对抗决策提供依据,具有重要研究意义。现有工作模式识别方法主要基于已知标签的训练集,而实际中先验信息匮乏,数据标签难以获知,极大影响了工作模式识别性能。为此,提出了一种在少量先验信息辅助下基于半监督学习聚类实现未知数据标注的工作模式识别方法。首先根据聚类算法的内部评价指标和外部评价指标对比分析AP聚类(affinity propagation clustering)、DBSCAN聚类(density-based spatial clustering of applications with noise)和模糊C均值聚类(fuzzy C-means clustering,FCM)3种典型聚类算法的性能,验证了AP聚类算法性能最优,并将其应用于对截获数据的数据标注中。然后利用卷积神经网络对雷达工作模式进行识别,并与已知标签训练集下的网络进行对比,验证了基于AP聚类算法进行数据标注的可行性,提升了相较传统识别网络的抗噪性,为后续多功能雷达行为认知提供了基础。 The accurate identification of the working mode of multi-function phased array radar can provide a basis for electronic countermeasure decision-making,which is of great research significance.The existing working pattern recognition methods are mainly based on the training set of known labels,but in practice,there is a lack of prior information,and the data labels are difficult to obtain,which greatly affects the performance of working pattern recognition.In this paper,a working pattern recognition method based on semi-supervised learning to achieve unknown data labeling with the help of a small amount of prior information is proposed.Firstly,the performance of AP clustering(affinity propagation clustering),DBSCAN(density-based spatial clustering of applications with noise)and FCM(fuzzy Cmeans clustering,FCM)is compared and analyzed according to the internal evaluation index and external evaluation index of the clustering algorithm, and it is applied to the data annota-tion of the intercepted data after the optimal performance of the AP clustering algorithm is verified. Then, the convolutional neural network is used to identify the radar working mode and compare it with the network under the known label training set, which verifies the feasi-bility of data annotation based on AP clustering algorithm, improves the noise immunity com-pared with the traditional recognition network, and provides a basis for subsequent multi-functional radar behavior cognition.
作者 余显祥 季康龙 李虎 何芸倩 齐晗廷 崔国龙 YU Xianxiang;JI Kanglong;LI Hu;HE Yunqian;QI Hanting;CUI Guolong(School of Information and Communication,University of Electronic Science and Technology of China,Chengdu 611731,China;Beijing Institute of Radio Measurement,Beijing 100854,China)
出处 《信息对抗技术》 2023年第6期29-46,共18页 Information Countermeasures Technology
基金 国家自然科学基金资助项目(62101097)。
关键词 电子对抗 工作模式识别 聚类算法 神经网络 深度学习 electronic countermeasures operating mode recognition clustering algorithm neural network deep-learning
  • 相关文献

参考文献13

二级参考文献85

  • 1贲德.机载有源相控阵火控雷达的新进展及发展趋势[J].现代雷达,2008,30(1):1-4. 被引量:25
  • 2倪国新,严广友.现代机载火控雷达的多功能发展趋势[J].电子科学技术评论,2005(3):7-11. 被引量:3
  • 3江卫,徐卫.机载相控阵火控雷达搜索方式的参数选择[J].电子科学技术评论,2005(5):15-17. 被引量:4
  • 4邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1997.315.
  • 5Tessem B. Approximations for Efficient Computation in the Theory of Evidence. Artificial Intelligence, 1993, 61(2): 315~329.
  • 6Mahler R P S. Combining Ambiguous Evidence with Respect to Ambiguous Priori Knowledge. I: Boolean Logic. IEEE Trans. on Systems, Man and Cybern Part A: Systems and Humans, 1996,26(1): 27~41.
  • 7Fister T, Mitchell R A. Modified Dempster-Shafer with Entropy Based Belief Body Compression. Proc. 1994 Joint Service Combat Identification Systems Conf. Naval Postgraduate School, Monterey, CA, 1994.
  • 8Gonzalez R C,Thomason M G.句法模式识别[M].濮群,徐凤家,徐光佑,译.北京:清华大学出版社,1984.
  • 9Visnevski N. Syntactic modeling of mufti-function radar[D]. Canada : McMaster university, 2005.
  • 10Visnevski N, Haykin S,Krishnamurthy V.Hidden Markov models for radar pulse train analysis in electronic warfare[C]//IEEE in- ternational conference on acoustics, speech and signa[ processing. Phliadel phia, USA : IEEE press, 2005 : 597-600.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部