期刊文献+

采用注意力机制与改进YOLOv5的光伏用地检测 被引量:1

Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5
下载PDF
导出
摘要 针对光伏产业快速发展所产生的光伏用地检测与定位需求,提出了一种基于YOLOv5改进的光伏用地检测算法YOLOv5-pv。为实现复杂场景下光伏用地的快速精确检测与定位,首先在YOLOv5基础上引入加权双向特征金字塔以实现简单快速的多尺度特征融合从而强化对小目标的检测能力;其次引入Ghost卷积以保留冗余信息中有用的特征图信息;最后增加协同注意力机制提高算法对光伏用地的关注度以提高抗背景干扰能力。实验结果表明:YOLOv5-pv比YOLOv5召回率提高6.68百分点,平均精度提高4.43百分点。该方法对光伏用地检测效果较好,可为光伏用地检测研究提供新的实验参考。 In response to the detection and positioning demands for land for photovoltaic development due to the rapid growth of the photovoltaic industry,this study proposed a YOLOv5-pv algorithm for the detection of land for photovoltaic development based on the improved YOLOv5.For quick and accurate detection and positioning of land for photovoltaic development in complex scenes,the YOLOv5-pv algorithm adopted a weighted bi-directional feature pyramid based on YOLOv5 to achieve simple and fast multi-scale feature fusion,thereby enhancing the ability to detect small targets.Subsequently,the Ghost convolution was employed to retain valuable feature map information in redundant information.Finally,a co-attention mechanism was integrated to improve the algorithm's attention on the land for photovoltaic development,increasing its capacity to resist background interference.The experimental results demonstrate that YOLOv5-pv outperformed YOLOv5,with the recall rate and average accuracy improved by 6.68 percentage points and 4.43 percentage points,respectively.Therefore,the method proposed in this study can effectively detect the land for photovoltaic development,holding referential significance for relevant detection research.
作者 陈笛 彭秋志 黄培依 刘雅璇 CHEN Di;PENG Qiuzhi;HUANG Peiyi;LIU Yaxuan(Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China;Surveying and Mapping Geo-informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education,Kunming 650093,China;Yunnan Natural Resources and Planning Intelligence Innovation Laboratory,Kunming 650093,China)
出处 《自然资源遥感》 CSCD 北大核心 2023年第4期90-95,共6页 Remote Sensing for Natural Resources
基金 国家自然科学基金项目“南方山地城镇建设用地分布与变化的坡度梯度效应研究”(编号:41961039)资助。
关键词 深度学习 YOLOv5 光伏用地 遥感影像检测 注意力机制 deep learning YOLOv5 land for photovoltaic development remote sensing imaging detection attention mechanism
  • 相关文献

参考文献7

二级参考文献73

共引文献133

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部