期刊文献+

GEE-Based monitoring method of key management nodes in cotton production

原文传递
导出
摘要 The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital forfield cotton macro-statistics,particularly for predicting cotton production and obtaining comprehensive data.This study examines Shihezi,Xinjiang as a case study,utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021.Three machine learning models(RF,SVM,and CART)were employed to extract annual crop classification area rasters,monitor weekly cultivation progress,and monitor abandoned cropland during the cultivation period.The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas,achieving the producer’s accuracy of the cotton category reached 98.5%,and the kappa coefficient is 0.947.Cotton cultivated in 2021 began is a week later than in 2020,yet exhibited a faster cultivate speed.The proportion of abandoned cottonfields in the study area rose in 2020 compared to 2019.The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle.
出处 《International Journal of Digital Earth》 SCIE EI 2023年第1期1907-1922,共16页 国际数字地球学报(英文)
基金 supported by the Laboratory of Lingnan Modern Agriculture Project[grant number NT2021009] China Agriculture Research System[grant number CARS-15-22] Guangdong Technical System of Peanut and Soybean Industry[grant number 2019KJ136-05] Key-Area Research and Development Program of Guangdong Province[grant number 2019B020214003] the leading talents of Guangdong province program[grant number 2016LJ06G689].
  • 相关文献

参考文献6

二级参考文献13

  • 1闫霈,张友静,张元.利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J].遥感信息,2007,29(6):62-67. 被引量:131
  • 2Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for Axis I DSM-IV Disorders. Biometrics Research Department: New York State Psychiatric Institute; 1994.
  • 3Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 2960; 20(1): 37-46.
  • 4Duberstein PR, Ma Y, Chapman BP, Conwell Y, McGriff J, Coyne JC, et al. Detection of depression in older adults by family and friends: distinguishing mood disorder signals from the noise of personality and everyday life. Int Psychogerietr. 2011; 23(4): 634-643. doi: http://dx.doi.org/10.1017/ $1041610210001808.
  • 5Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. Chapman & HalI/CRC; 2012.
  • 6Landis JR, Koch ~36. The measurement of observer agreement for categorical data. Biometrics. 1977; 33: 159- 174. doh http://dx.doi.org/10.2307/2529310.
  • 7Ma Y, Tang W, Feng C, Tu XM. Inference for kappas for longitudinal study data: applications to sexual health research. Biometrics. 2008; 64: 781-789. doi: http://dx.doi. org/10.1111/j. 1541-0420.2007.00934. x.
  • 8Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol. 1990; 43(6): 543-549. doi: http://dx.doi.org/10.1016/0895- 4356(90)90158-L.
  • 9Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45(1): 255-268. doi: http:// dx.doi.org/10.2307/2532051.
  • 10Shrout PE, Fleiss J. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979; 86(2): 420-428.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部