摘要
The distribution and dynamic changes of regional or national population data with long time series are very important for regional planning,resource allocation,government decision-making,disaster assessment,ecological protection,and other sustainability research.However,the existing population datasets such as LandScan and WorldPop all provide data from 2000 with limited time series,while GHS-POP only utilizes land use data with limited accuracy.In view of the limited remote sensing images of long time series,it is necessary to combine existing multi-source remote sensing data for population spatialization research.In this research,we developed a nighttime light desaturation index(NTLDI).Through the cross-sensor calibration model based on an autoencoder convolutional neural network,the NTLDl was calibrated with the same period Visible Infrared Imaging Radiometer Suite Day/Night Band(VIRS-DNB)data.Then,the geographically weighted regression method is used to determine the population density of China from 1990 to 2020 based on the long time series NTL.Furthermore,the change characteristics and the driving factors of China's population spatial distribution are analyzed.The large-scale,long-term population spatialization results obtained in this study are of great significance in government planning and decision-making,disaster assessment,resource allocation,and other aspects.
基金
supported by National Natural Science Foundation of China[Grant Number 41930650]
Ningxia Hui Autonomous Region Key Research and Development Project[Grant Number 2022BEG03064]
State Key Laboratory INTERNATIONAL JOURNAL OF DIGITAL EARTH 2719 of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM[Grant Number 2021-03-04].