摘要
提出一种基于人工智能算法的能量高效分簇路由协议,应对无线传感器网络节点中能耗不均衡的问题。在成簇阶段,利用萤火虫优化算法优化模糊C均值聚类,借助改进的模糊C均值聚类算法解决网络分簇问题;根据节点剩余能量和地理位置动态更新簇首。簇间通信阶段,采用蚁群优化算法建立高效的簇间路由,为簇首节点构建最优多跳传输路径。簇内通信阶段引入轮询控制机制,使网络能量效率进一步得到提高。仿真结果表明,所提协议在能量效率和生存周期方面有一定提升。
An energy-efficient clustering routing protocol based on artificial intelligence algorithm was proposed to deal with the problem of unbalanced energy consumption in wireless sensor network nodes.In the clustering stage,the firefly optimization algorithm was used to optimize the fuzzy C-means clustering,and the improved fuzzy C-means clustering algorithm was used to solve the network clustering problem.The cluster head was dynamically updated according to the residual energy and geograp-hical location of the node.In the inter-cluster communication phase,the ant colony optimization algorithm was used to establish an efficient inter-cluster routing,and an optimal multi-hop transmission path was constructed for the cluster head node.The polling control mechanism was introduced in the intra-cluster communication stage to further improve the network energy efficiency.The simulation results show that the proposed protocol has certain improvement in energy efficiency and lifetime.
作者
王彦峰
陈锟
王兴华
WANG Yan-feng;CHEN Kun;WANG Xing-hua(Grid Planning and Research Center,Guangdong Power Grid Corporation,Guangzhou 510080,China)
出处
《计算机工程与设计》
北大核心
2023年第12期3592-3598,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(61902218、61972228)
中国南方电网公司科技基金项目(GDKJXM20198046)。
关键词
无线传感器网络
萤火虫优化
模糊C均值聚类
蚁群优化
分簇算法
路由
wireless sensor networks
firefly algorithm
fuzzy C-means(FCM)clustering
ant colony optimization
clustering algorithm
routing algorithm