摘要
建立了CO_(2)气体保护焊工艺参数与焊缝几何尺寸(熔宽、熔深)之间的多层感知机神经网络预测模型,并基于焊接试验数据训练模型,确定了模型的数学解析式;通过分析焊缝截面和表面形貌特征,建立焊缝形貌的虚拟化仿真模型;通过python编程开发了焊缝形貌预测与虚拟化仿真系统。结果表明:所建立的多层感知机神经网络预测模型对熔宽预测的最大偏差为0.097 mm,模型拟合优度为0.999269,对熔深预测的最大偏差为0.051 mm,模型拟合优度为0.999567;建立了以焊缝熔深和熔宽为输入变量的焊缝截面形貌数学模型和以焊缝熔宽为输入变量的表面形貌数学模型。
A multi-layer perceptron neural network prediction model between the process parameters of CO_(2)gas shielded welding and the weld geometry(melting width and depth)was established,and the mathematical analytic formula of the model was determined based on the welding test data training the model.The virtual simulation model of weld morphology was established by analyzing the characteristics of weld section and surface morphology.The weld morphology prediction and virtualization simulation system was developed by python programming.The results show that the maximum deviation for predicting melting width with the established multi-layer perceptron neural network prediction model was 0.097 mm with a model fitting coefficient of 0.999269,and that for predicting melting depth was 0.051 mm with a model fitting coefficient of 0.999567.The mathematical model of weld section morphology with melting depth and melting width as input variables and the mathematical model of surface morphology with melting width as input variables were established.
作者
肖罡
欧敏
李时春
万可谦
周妃四
杨钦文
XIAO Gang;OU Min;LI Shichun;WAN Keqian;ZHOU Feisi;YANG Qinwen(Jiangxi KMAX Industrial Co.,Ltd.,Nanchang 330100,China;Hunan Provincial Key Laboratory for Efficient Precision Machining of Difficult to Machine Materials,Hunan University of Science and Technology,Xiangtan 411201,China;College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China)
出处
《机械工程材料》
CAS
CSCD
北大核心
2023年第11期67-73,共7页
Materials For Mechanical Engineering
基金
国家自然科学基金资助项目(52075159)
江西省自然科学基金资助项目(20224ACB218002)
江西省高层次高技能领军人才培养工程资助项目
湖南省自然科学基金资助项目(2022JJ30019)
湖南省教育厅科学研究项目(21A0301)
广西大学省部共建特色金属材料与组合结构全寿命安全国家重点实验室开放基金资助项目(2022GXYSOF24)。