摘要
针对屋顶光伏资源评估中难以准确高效地获取建筑物屋顶区域的问题,该文提出一种基于Unet的FPN_AttentionUnet语义分割网络,用于实现建筑物屋顶的高精度自动提取。该网络融合Soft-Attention注意力机制和双层特征金字塔FPN以提取准确的语义信息,精细化分割结果。Soft-Attention注意力机制用于处理和连接编码部分与解码部分的特征图;双层特征金字塔FPN融合解码部分不同尺度的特征图来获取不同尺度的特征信息。采用无人机获取苏州某区域上空的建筑物数据集和武汉大学WHU公开数据集分别进行训练,训练结果表明:与Unet、AttentionUnet、FPNUnet网络相比,该文提出的FPN_AttentionUnet在建筑物外轮廓提取中具有更高的精度,有效提高边缘提取效果。在自制数据集中类别像素准确率C_(PA)达95.56%,平均交并比M_(IoU)达91.10%,在WHU公开数据集中分割效果同样优于其他对比网络,所提算法能够有效提升建筑物外轮廓边缘的分割精度。最后以河海大学常州校区为例,利用提出的算法从无人机图像中分割建筑物,评估指定区域的光伏发电量与光伏组件安装潜力。
Aiming at the problem that it is difficult to obtain the roof area of buildings accurately and efficiently in the evaluation of roof photovoltaic resources,the FPN_AttentionUnet semantic segmentation network is proposed to realize high-precision automatic extraction of building roofs.The network integrates soft attention mechanism and double-layer feature pyramid FPN to extract accurate semantic information and refine segmentation results.The Soft-Attention mechanism is used to process and connect the feature map of the encoding part and the decoding part.Double-layer feature pyramid FPN fuses feature maps of different scales to obtain feature information of different scales.The unmanned aerial vehicle is used to obtain the building data set over a certain area of Suzhou and the WHU public data set of Wuhan University for training,respectively.The training results show that compared with Unet,AttentionUnet and FPNUnet networks,the proposed FPN_AttentionUnet has higher accuracy in building outer contour extraction,which effectively improves the effect of edge extraction.In the self-made dataset,the category pixel accuracy C_(PA) reaches 95.56%,and the average intersection and union ratio M_(IoU) reaches 91.10%.In the WHU public dataset,the segmentation effect is also better than other comparison networks.Finally,taking Changzhou Campus of Hohai University as an example,the proposed algorithm was used to segment buildings from UAV images to evaluate the photovoltaic power generation and photovoltaic module installation potential of the area.
作者
徐孝彬
张好杰
白建波
裴融浩
胡家宇
谭治英
Xu Xiaobin;Zhang Haojie;Bai Jianbo;Pei Ronghao;Hu Jiayu;Tan Zhiying(College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China;School of Biomedical Engineering(Suzhou),Division of Life Science and Medicine,University of Science and Technology of China,Hefei 230026,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2023年第11期82-90,共9页
Acta Energiae Solaris Sinica
基金
国家重点研发计划(2022YFB4201004)
国家自然科学基金面上项目(51676063)。
关键词
分布式光伏
深度学习
语义分割
整县推进
改进Unet
建筑物提取
distributed photovoltaic
deep learning
semantic segmentation
promote the whole county
improved Unet
building extraction