期刊文献+

基于类别域自适应的滚动轴承故障诊断 被引量:2

Bearing fault diagnosis model based on class domain adaptation
下载PDF
导出
摘要 滚动轴承作为旋转机械的关键部件,在风电机组中故障频发严重制约了发电效率。而传统的滚动轴承故障诊断方法要求训练数据和测试数据服从同一分布,导致其泛化能力不足,并不能有效解决实际工业中的无标签跨域故障诊断问题。为此,提出了一种基于类别域自适应的轴承故障诊断方法,利用有标签的源域数据完成对无标签目标域的故障分类,该方法采用一维卷积神经网络作为特征提取器提取原始振动信号的深度特征,并依据源域故障类别设计了一组锚定器以缩小域间同类故障间距并扩大异类故障间距。并且两个轴承故障数据集上的对比试验结果表明所提方法的有效性,实现了高精度的跨域轴承故障诊断的目标,可以作为跨域诊断故障的有效工具。 Rolling bearings as a key part of rotating machinery,seriously restrict the power generation efficiency in wind turbines due to frequent failures.However,traditional rolling bearing fault diagnosis methods require the same distribution of training data and test data,which leads to their insufficient generalization ability and cannot effectively solve the problem of unlabeled cross-domain fault diagnosis in practical industry.Therefore,a domain adaptation bearing fault diagnosis method based on class was proposed,which uses labeled source domain data to achieve fault classification of unlabeled target domain.It uses the one-dimensional convolutional neural network as a feature extractor to extract the depth features of original vibration signals,and according to the class of the source domain to design a group of anchor layers to narrow the cross-domain distance between the same class faults and expand the cross-domain distance between different class faults.Moreover,the comparative experimental results on two bearing fault data sets show the effectiveness of the proposed method,which achieves the goal of high-precision cross-domain bearing fault diagnosis,and can be used as an effective tool for cross-domain fault diagnosis.
作者 张英杰 张彩华 陆碧良 丁晨 李蒲德 ZHANG Yingjie;ZHANG Caihua;LU Biliang;DING Chen;LI Pude(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第24期117-126,共10页 Journal of Vibration and Shock
基金 国家重点研发计划(2019YFE0105300)。
关键词 故障诊断 风电机组 滚动轴承 域自适应 卷积神经网络 fault diagnosis wind turbines rolling bearing domain adaptation convolutional neural network
  • 相关文献

参考文献6

二级参考文献70

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:85
  • 2Jiangquan ZHANG,Yi SUN,Liang GUO,Hongli GAO,Xin HONG,Hongliang SONG.A new bearing fault diagnosis method based on modified convolutional neural networks[J].Chinese Journal of Aeronautics,2020,33(2):439-447. 被引量:45
  • 3耿中行,屈梁生.小波包原理及其在机械故障诊断中的应用[J].信号处理,1994,10(4):244-249. 被引量:23
  • 4Adair, L. W., & Weingart, L. (2007). The timing and function of offers in U.S. and Japanese Negotiations. Journal of Applied Psychology, 92, 1056 - 1068.
  • 5Ash, K. I., & Jennifer, W. (2008). Hindsight bias in insight and mathematical problem-solving: evidence of different reconstruction mechanisms for metacognitive vs. situational judgments. Memory & Cognition, 36, 822 - 837.
  • 6Brewer, N. T., & Chapman, G.. B. (2002). The fragile basic anchoring effect. Journal of Behavioral Decision Making, 15, 65 - 77.
  • 7Brewer, N. T., Chapman, G.. B., Schwartz, J.A., & Bergus, G.. R. (2007). The influence of irrelevant anchors on the judgments and choices of doctors and patients. Medical Decision Making, 27, 203 -211.
  • 8Chapman, G. B., & Johnson, E. J. (2002). Incorporating the irrelevant: Anchors in judgments of belief and value. In: T. Gilovich, D. Griffin, & D. Kahneman, Heuristics and biases: The psychology of intuitive judgment.(pp. 120 - 138). Cambridge: Cambridge University Press.
  • 9Epley, N., & Gilovich, T. (2001). Putting adjustment back in the anchoring and adjustment heuristic: Differential processing of self-generated and experimenter-provided anchors. Psychological Science, 12, 391-396.
  • 10Epley, N., & Gilovich, T. (2004). Are adjustments insufficient? Personality and Social Psychology Bulletin, 30, 447-460.

共引文献159

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部