摘要
现有报表在推荐过程中,以固定需求为导向,很难做到自适应推荐。为此提出一种报表自适应推荐算法。通过设计自适应推荐模型,依靠数据标签完成报表的分类管理,并通过用户访问记录,获取用户报表需求特征变化。最终根据用户的活跃度,分别采用不同的计算模型,完成报表自适应推荐。实验结果表明:从报表自适应推荐结果来看,该算法相比其他两种工具,报表自适应推荐召回率有较大提升。
In the process of recommendation,the existing reports have been guided by fixed requirements,so it is difficult to make adaptive recommendation.This paper proposes an adaptive report recommendation algorithm.Through the design of adaptive recommen-dation model,the classification management of reports is completed by relying on data labels,and the changes of user report de-mand characteristics are obtained through user access records.Finally,according to the user's activity,different calculation mod-els are adopted to complete the report adaptive recommendation.The experimental results show that compared with the other two tools,the recall rate of report adaptive recommendation is greatly improved.
作者
郑剑
刘宁
张毅
王洋
王丹丹
ZHENG Jian;LIU Ning;ZHANG Yi;WANG Yang;WANG Dan-dan(State Grid Tianjin Electric Power Company,Tianjin 300001 China;Tianjin Sanyuan Electric Information Technology Co.,Ltd.,Tianjin 300010 China)
出处
《自动化技术与应用》
2023年第12期128-130,135,共4页
Techniques of Automation and Applications
关键词
数据标签
用户访问记录
报表
自适应推荐
算法设计
data labels
user access records
report form
adaptive recommendation
algorithm design