摘要
睡美人文献具有重要价值,在确定了睡美人文献的识别方法后,应该对睡美人文献的特征、睡眠原因和唤醒过程进行分析,以期找到实现睡美人文献早期识别的线索。以关注度排名前1%的文献形成实验数据集,选取ASB指数(Altmetrics sleeping beauty index)作为睡美人文献的识别方法。计算实验数据集的ASB值,选取ASB值最高的10篇文章作为睡美人文献代表,对这10篇文章的多项特征和关注累积过程进行详细分析,归纳睡美人文献的文献特征和唤醒规律。睡美人文献内容主要可以归为两类:首创型文献和经典案例型文献,文献涉及内容均是日常生活中频繁出现的话题且文献内容质量较高。通过文献特征分析可以发现,非开放存取、无资助的文献更有可能成为睡美人文献,文献内容复杂、超出公众知识理解水平时容易陷入睡眠。睡美人文献被唤醒的主要原因有:(1)读者知识水平的提高;(2)相似问题的出现;(3)与公众事件相关;(4)有影响力的账号推荐等。实现睡美人文献的早期识别,可以多关注首创型或经典案例型文献、在Patent或Wikipedia平台获得关注的文献、非开放存取或无资助的文献。使用社交媒体平台的学术用户,在实现睡美人文献早期识别方面具有重要作用。
It has been shown that Altmetrics-based“sleeping beauties”(A-SBs)are of great value.After developing methods to identify A-SBs,we must analyze the features,sleep causes,and awakening laws of A-SBs to realize their early prediction.This research considered the articles with the top 1%of attention as its experimental data and ASB index as the identification method.To explore the literature features and awakening laws of A-SBs,this research took the 10 articles with the highest ASB values as representative A-SBs and analyzed their features and attention accumulation processes in detail.The content of A-SBs is of high quality and can be divided into two categories,innovation and classic,and their topics frequently appear in daily life.Non-open-access or non-funded articles are more likely to become A-SBs.With complex content that is beyond the knowledge level of the general public,an article has more possibilities to fall asleep.The reasons for A-SBs being awakened include(1)improvement of the public’s knowledge,(2)encountering similar problems,(3)related public events,and(4)influential account recommendations.For the early prediction of A-SBs,it is helpful to pay more attention to innovative or classic articles,articles that gained attention on Patent or Wikipedia,non-open access articles,or non-funded articles.Scholars who use social media play an important role in realizing the early prediction of A-SBs.
作者
向菲
曹广
沈桐
陈华芳
Xiang Fei;Cao Guang;Shen Tong;Chen Huafang(School of Medicine and Health Management,Tongji Medical College of Huazhong University of Science and Technology,Wuhan 430030;Zhejiang Provincial People’s Hospital,Hangzhou 310014;Tongji Hospital,Tongji Medical College of Huazhong University of Science and Technology,Wuhan 430030)
出处
《情报学报》
CSSCI
CSCD
北大核心
2023年第11期1276-1288,共13页
Journal of the China Society for Scientific and Technical Information
基金
中央高校基本科研业务费资助项目“基于Altmetrics的睡美人文献识别方法与唤醒机制研究”(HUST:2021WKYXZX007)。