摘要
研究有界域上一类带扩散项的广义Cahn-Hilliard方程解的适定性问题.此类方程主要用于描述物理和生物学中的一类扩散现象.在非线性扩散项满足更一般的假设条件下,利用标准的Galerkin方法和先验估计得到该方程在Neumann边界条件下弱解的适定性,并证明了解的相关正则性.
In this paper,the suitability problems of solutions for the generalized Cahn-Hilliard equation with proliferation term in the bounded domain are investigated.Such equations are mainly used to describe a class of diffusion phenomenas in physics and biology.In this paper,under the condition that the nonlinear diffusion term satisfies the more general assumptions,the well-posedness of the weak solution of the equation under the Neumann boundary condition is obtained by using the standard Galerkin scheme and a priori estimation,where the relevant regularity of the solution is proved.
作者
李书岚
蒲志林
LI Shulan;PU Zhilin(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,Sichuan)
出处
《四川师范大学学报(自然科学版)》
CAS
2024年第2期240-245,共6页
Journal of Sichuan Normal University(Natural Science)
基金
四川省科技厅科学研究项目(22CXTD0029)。