期刊文献+

一种可移动的车流量实时检测系统设计 被引量:1

Design of a Movable Vehicle Flow Real-time Detection System
下载PDF
导出
摘要 该研究开发一种创新的移动车流量实时检测系统,以取代传统的固定摄像头系统,提高检测灵活性,将检测数据公开分享,应用于智慧出行领域。通过无线实现远程控制和数据传输,实时检测车辆类型及其数量。记录数据,并上传至公共网络,以供查阅。该系统可灵活部署于较多场景,解决了传统检测系统的固有限制。系统成功实现了对车流量的实时检测,并实现数据收集。结果表明,可移动车流量实时检测系统具有巨大潜力,可应用于智慧出行领域。在没有固定摄像头或部署摄像头存在困难的地区具有重要价值,为城市规划和交通管理提供了便捷的数据。其灵活性和可部署性,可为了解和管理交通流量提供可靠依据,从而为市政建设提供更多便利。 This research develops an innovative mobile vehicle flow real-time detection system to replace the traditional fixed camera system,improve the detection flexibility,and share the detection data openly for application in the field of smart travel.Realize remote control and data transmission through wireless,real-time detection of vehicle types and their number.Record data and upload it to a public network for review.The system can be flexibly deployed in many scenarios,which solves the inherent limitations of traditional detection systems.The system successfully realizes real-time detection of vehicle flow and data collection.The research results show that the movable vehicle flow real-time detection system has great potential and can be applied in the field of smart travel.It is valuable in areas where there are no fixed cameras or where it is difficult to deploy cameras,providing convenient data for urban planning and traffic management.Its flexibility and deployability can provide a reliable basis for understanding and managing traffic flow,thereby providing more convenience for municipal construction.
作者 张宇豪 肖新宇 李欣雪 廖金湘 訾梦超 ZHANG Yuhao;XIAO Xinyu;LI Xinxue;LIAO Jinxiang;ZI Mengchao(School of Electrical and Electronic Engineering,Guangdong Technology College,Zhaoqing 526100,China)
出处 《现代信息科技》 2023年第21期131-135,共5页 Modern Information Technology
基金 广东理工学院大学生创新创业训练计划项目(S202113720024)。
关键词 树莓派 目标检测 目标追踪 YOLOv5 Deepsort Raspberry Pi target detection target tracking YOLOv5 Deepsort
  • 相关文献

参考文献6

二级参考文献33

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2罗欣,朱清新.改进的基于边缘检测技术的车流量统计系统[J].计算机工程,2006,32(9):228-229. 被引量:9
  • 3SOH Jung, CHUN Byung tae, WANG Min. Analysis of Road Image Sequences for Vehicle Counting[J]. IEEE International Conference on, 1995,1 : 679-683.
  • 4JI Xiaopeng,WEI Zhiqiang, FENG Yewei. Effective vehicle detection technique for traffic surveillance systems [J]. Journal of Visual Communication and Image Representation, 2006,17 (3) : 647-658.
  • 5BENJAMIN Coifman, DAVID Beymer, PHILIP Mclauchlan,et al. A real-time computer vision system for vehicle tracking and traffic surveillance [J]. Transportation Research Part C, 1998,6(4):271-288.
  • 6ZHANG Guohui, RYAN P Avery, WANG Yinhai. A Video-based Vehicle Detection and Classification System for Real-time Traffic Data Collection Using Unealibrated Video Cameras [J]. Journal of the Transportation Research Board, 2007, 1993 : 138-147.
  • 7WANG GUOLIN, XIAO DEYUN, GU J. Review on vehicle detec- tion based on video for traffic surveillance[ C]// IEEE International Conference on Automation and Logistics. Piscataway: IEEE Press, 2008 : 2961 - 2966.
  • 8LEI MANCIqUN, LEFLOCH D, GOUTON P, et al. A video-based real-time vehicle counting system using adaptive background method [ C]//2008 IEEE International Conference on Signal Image Tech- nology and lnternet Based Systems. Washington, DC: IEEE Com- puter Society, 2008:523 - 528.
  • 9SHENG HAO, LI CHAO, WEI QI, et al. An approach to motion ve- hicle detection in complex factors over highway surveillance video [C]// 2009 International Joint Conference on Computational Sci- ences and Optimization. Washington, DC: IEEE Computer Society, 2009:520 - 523.
  • 10XIONG CHANGZHEN, FAN WUYI, LI ZHENGXI. Traffic flow detection algorithm based on intensity curve of high-resolution image [C]// 2010 2nd International Conference on Computer Modeling and Simulation. Piseataway: IEEE Press, 2010:159 - 162.

共引文献42

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部