摘要
关于生物质油温拌沥青制备工艺的研究较少,合理的制备工艺是生物质油温拌沥青性能发挥的重要保证。采用生物质油与70#、90#基质沥青制备温拌沥青,通过熵权Topsis法确定了生物质油温拌沥青的最佳制备工艺;通过动态剪切流变试验和弯曲梁流变试验评价了生物质油温拌沥青的高、低温性能;通过红外光谱与沥青四组分试验研究了生物质油温拌沥青的温拌机理,结果表明,生物质油温拌90#、70#基质沥青最佳制备工艺均为剪切温度130℃,剪切速率1500 r/min,剪切时间10 min,发育时间15 min;生物质油的掺加降低了沥青的高温性能,但提高了低温性能;生物质油与沥青混合过程主要为物理共混,生物质油提高了沥青胶团的分散度,导致沥青组分发生了迁移,使得沥青性能发生变化。
At present,there are few studies focusing on the preparation process of biomass oil warm mix asphalt.A rational preparation process is crucial to ensuring the performance of biomass oil warm mix asphalt.In this study,warm mix asphalt is prepared using biomass oil along with 70#,90#base asphalt.The optimal preparation process of biomass oil warm mix asphalt is determined using the entropy weight Topsis method.The high and low-temperature performance of the biomass oil warm mix asphalt is evaluated by dynamic shear rheological test and bending beam rheological test.The warm mixing mechanism of biomass oil warm-mixed asphalt is studied using infrared spectroscopy and asphalt four-component test.The results show that the optimum preparation process for biomass oil warm-mixed 90#and 70#base asphalt involves a shear temperature of 130°C,shear rate of 1500 r/min,shear time of 10 min and development time of 15 min.The addition of biomass oil reduces the high temperature performance of asphalt,but improves its low temperature performance.The mixing process of biomass oil and asphalt mainly involves physical blending,improving the dispersion of asphalt micelles.This results in the migration of asphalt components,ultimately enhancing the asphalt performance.
作者
李宁利
王思宇
栗培龙
LI Ningi;WANG Siyu;LI Peiong(School of civil and Transportation Engineering,Hebei University of Technology,Tianjin 300401,P.R.China;Key Laboratory of Highway Structure and Materials,Chang’an University,Xi’an 710064,P.R.China)
出处
《重庆大学学报》
CAS
CSCD
北大核心
2023年第12期123-132,共10页
Journal of Chongqing University
基金
长安大学重点科研平台开放基金项目(300102210510)。
关键词
道路工程
温拌沥青
生物质油
制备工艺
流变性能
红外光谱
四组分
road works
warm mix asphalt
biomass oil
preparation process
rheological properties
infrared spectrum
four components