期刊文献+

基于差分进化算法的二阶时滞系统参数辨识

Parameter Identification of Second-Order Time-Lag SystemBased on Differential Evolutionary Algorithm
下载PDF
导出
摘要 针对二阶时滞系统的参数辨识问题,提出一种根据阶跃响应估计系统未知参数的新方法。该方法首先求解出二阶时滞系统阶跃响应函数表达式;然后通过定义目标函数,将参数估计问题转化为非线性最小化问题。为求解目标函数的最优解,提出采用差分进化算法对目标函数进行优化的方法。在该方法中,采用“either-or”策略以减小控制参数设置对差分进化算法性能的影响。通过仿真试验,分别研究了所提方法在不同噪声条件下的参数辨识性能。试验结果表明,所提方法具有较快的收敛速度、较高的参数估计精度和较好的抗噪声能力。所提方法可有效解决二阶时滞系统的参数估计问题。 To solve the parameter identification problem of second-order time-lag system, a new method is proposed to estimate the unknown parameters of the system based on the step response. The method first solves the expression of the step response function of the second-order time-lag system;then the parameter estimation problem is transformed into a nonlinear minimization problem by defining the objective function. To solve the optimal solution of the objective function, a method of optimizing the objective function using differential evolutionary algorithm is proposed. In this method, the “either-or” strategy is adopted to minimize the influence of control parameter settings on the performance of the differential evolution algorithm. The parameter identification performance of the proposed method under different noise conditions is investigated seperataly through simulation experiments. The experimental results show that the proposed method has faster convergence speed, higher parameter estimation accuracy and better noise resistance. The proposed method can effectively solve the parameter estimation problem of second-order time-lag systems.
作者 李敏花 柏猛 LI Minhua;BAI Meng(Department of Electrical Engineering and Information Technology,Shandong University of Science and Technology,Jinan 250031,China)
出处 《自动化仪表》 CAS 2023年第12期16-20,25,共6页 Process Automation Instrumentation
基金 山东省自然科学基金资助项目(ZR2020MF086)。
关键词 二阶时滞系统 参数估计 系统辨识 阶跃响应 差分进化 过阻尼 欠阻尼 Second-order time-lag system Parameter estimation System identification Step response Differential evolution Overdamping Underdamping
  • 相关文献

参考文献1

二级参考文献8

  • 1Bajarangbali, Somanath M. Relay based identification of systems [ J ]. International Journal of Scientific & Engineering Research ,2012,3 (6) : 1-4.
  • 2Sohesz K, Hagglund T, Astrom K J. Transfer function parameter identification by modified relay feedback [ C ]//Proceedings of the American Control Conference,2010:2164 - 2169.
  • 3Fan J. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence [ J ]. Mathematics of Computation,2012,81 ( 277 ) :447 - 466.
  • 4Sugihara T. Solvability-unconcerned inverse kinematics by the Levenberg-Marquardt method [ J 1. IEEE Transactions on Robotics, 2011,27(5) :984 -991.
  • 5Chan K Y, Dillon T S, Singh J, et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2012,13 ( 2 ) : 644 - 654.
  • 6Kleefeld A, Reil?,el M. The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography [ J ]. Applied Mathematics and Computation,2011,217 (9) : 4490 - 4501.
  • 7胡钢墩,李发泽.惯性系统的时域在线辨识[J].控制与决策,2010,25(1):133-136. 被引量:9
  • 8严德昆.二阶过阻尼系统传递函数辨识的新方法[J].控制理论与应用,2001,18(4):638-640. 被引量:6

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部