摘要
在考虑非连续治疗策略对病毒变异前后影响的基础上建立了右端不连续的双线性病毒变异模型,给出了模型的种群基本再生数R_(0)。通过构造Lyapunov函数和使用LaSalle不变集证明了以下结论:当R_(0)>1时,模型的解将全局渐近收敛于有病平衡点;当R_(0)>1时,模型的解将全局渐近收敛于无病平衡点。通过MATLAB数值仿真验证结论的正确性。
On the basis of considering the impact of discontinuous treatment strategies on virus mutation before and after,a right discontinuous bilinear virus mutation model is established,and the basic regeneration number of the model is given.The following conclusion was proved by constructing Lyapunov functions and using LaSalle invariant sets:the solution of the model will globally asymptotically converge to the diseased equilibrium point when,the solution of the model would globally asymptotically converge to the disease-free equilibrium point when.The correctness of the conclusion is verified through MATLAB numerical simulation.
作者
李迅
陶龙
LI Xun;TAO Long(Nanjing Vocational Health College,Jiangsu Union Technical Institute,Nanjing 210038,China;Public Foundation College,Wannan Medical College,Wuhu 241000,China)
出处
《新乡学院学报》
2023年第12期10-15,共6页
Journal of Xinxiang University
基金
皖南医学院科学研究项目(WK202117)。