期刊文献+

基于树莓派4B的人脸表情实时识别系统

Real time facial expression recognition system based on Raspberry Pi 4B
下载PDF
导出
摘要 通过搭建硬件环境、安装软件环境、数据预处理、训练模型、实时识别人脸表情等步骤,实现基于树莓派4B的人脸表情实时识别系统。以树莓派4B作为载体,所需软件为Python3.7、OpenCV、Tensorflow和Keras。采用MiniVGG13卷积神经网络模型训练模型,在树莓派上实时识别人脸表情,以实现人脸表情的分类并通过显示器展示。该系统可以应用于人机交互、智能家居等多个领域。 A real time facial expression recognition system based on Raspberry Pi 4B is realized through steps such as building hardware environment,installing software environment,data preprocessing,training models,and recognizing facial expressions in real time.Raspberry Pi 4B is used as the carrier,the required software is Python3.7,OpenCV,Tensorflow and Keras,and MiniVGG13 convolutional neural network model is used to train the model.Facial expressions are recognized and classified in real time on Raspberry Pi and displayed on the monitor.This system can be applied in multiple fields such as human-computer interaction and smart home.
作者 王磊 思胜杰 杜志杰 吴悔 徐金 Wang Lei;Si Shengjie;Du Zhijie;Wu Hui;Xu Jin(Computer and Information Engineering College of the Xinjiang Agricultural University,Urumqi,Xinjiang 830052,China)
出处 《计算机时代》 2023年第12期171-174,共4页 Computer Era
基金 科技创新2030——“新一代人工智能”重大项目(2022ZD0115805)。
关键词 树莓派4B MiniVGG13 TensorFlow Raspberry Pi 4B MiniVGG13 TensorFlow
  • 相关文献

参考文献5

二级参考文献31

  • 1Buciu I, Kotsia I, Pitas I. Facial Expression Analysis under Partial Occlusion// Proc of the IEEE International Conference on Acous- tics, Speech and Signal Processing. Philadelphia, USA, 2005, V : 453-456.
  • 2Kotsia I, Buciu I, Pitas I. An Analysis of Facial Expression Recog- nition under Partial Facial Image Occlusion. Image and Vision Com- puting, 2008, 26(7) : 1052-1067.
  • 3Bourel F, Chibelushi C C, Low A A. Recognition of Facial Expre- ssions in the Presence of Occlusion//Proc of the 12th British Ma- chine Vision Conference. Manchester, UK, 2001:213-222.
  • 4Bourel F, Chibelushi G C, Low A A. Robust Facial Expression Recognition Using a State-Based Model of Spatially-Localised Facial Dynamics//Proc of the 5th IEEE International Conference on Au- tomatic Face and Gesture Recognition. Washington, USA, 2002: 106-111.
  • 5Hammal Z, Arguin M, Gosselin F. Comparing a Novel Model Based on the Transferable Belief Model with Humans During the Recogni- tion of Partially Occluded Facial Expressions [ EB/OL]. [ 2013 - 04-05 ]. http ://www. joumalofvision, org/content/9/2/22, full.
  • 6Zhang L G, Tjondronegoro D W, Chandran V. Toward a More Ro- bust Facial Expression Recognition in Occluded Images Using Ran- domly Sampled Gabor Based Templates//Proc of the IEEE Interna- tional Conference on Multimedia and Expo. Barcelona, Spain, 2011 : 1-6.
  • 7Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8Cotter S F. Sparse Representation for Accurate Classification of Cor- rupted and Occluded Facial Expressions// Proc of the IEEE Inter- national Conference on Acoustics, Speech and Signal Processing. Dallas, USA, 2010:838-841.
  • 9Cotter S F. Recognition of Occluded Facial Expressions Using a Fusion of Localized Sparse Representation Classifiers//Proc of the IEEE Digital Signal Processing & Signal Processing Education Workshop. Sedona, USA, 2011 : 437-442.
  • 10Wang Z, Ying Z L. Facial Expression Recognition Based on Local Phase Quantization and Sparse Representation // Prec of the 8th International Conference on Natural Computation. Chongqing, Chi- na, 2012:222-225.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部