摘要
为了研究有界相等代数上Bosbach态和Riecan态的存在性.证明了有界相等代数ε上有Bosbach态等价于ker(s)是ε的素奇异滤子;得出对合相等代数上的Bosbach态和Riecan态是一致的;并且给出了有界的相等代数ε有Riecan态当且仅当ε存在一个真的弱奇异滤子F.
The aim of this paper is to investigate the existences of Bosbach states and Riecan states on equality algebras.We prove that an equality algebrasεhas Bosbach states if and only ifεhas a prime fantastic lter ker(s).It is concluded that Bosbach states and Riecan states of equality algebras are consistent.Furthermore,we also obtain thatϵhas Riecan states if and only if a proper lter F satis es(WQY)condition.
作者
梁婕
朱勇
辛小龙
王军涛
LIANG Jie;ZHU Yong;XIN Xiaolong;WANG Juntao(Shanxi railway institute,Weinan 714000,China;School of Mathematics,Northwest University,Xi′an 710127,China;School of Science,Xi′an Polytechnic University,Xi′an 710048,China;School of Science,Shiyou University,Xi′an 710065,China)
出处
《纯粹数学与应用数学》
2023年第4期569-580,共12页
Pure and Applied Mathematics
基金
陕西省自然科学基础研究计划项目(2020JQ-762)
陕西铁路工程职业技术学院校级项目(KY2020-24,KY2022-04)。