摘要
针对装备系统维修工作的时间间隔确定问题,提出了基于RBF神经网络分析模型的装备预防性维修时间间隔的方法。通过构建以预防性维修时间、故障修复性维修时间、系统可靠度为输入,以维修时间间隔为输出的RBF神经网络模型,可准确地实现维修时间间隔的确定。将该方法结果与基于双参数威布尔分布规律以及基于最大可用度的预测结果进行了对比,结果表明:所提方法具有更高的预测精度,在针对装备的预防性维修中具有重大意义。
To solve the problem of determining the time interval of equipment system maintenance work,the method of equipment preventive maintenance time interval based on RBF neural network analysis model was proposed.The determination of maintenance intervals can be accurately achieved by constructing an RBF neural network model with preventive maintenance time,fault repair maintenance time and system reliability as inputs and maintenance intervals as outputs.In comparison with those based on the two-parameter Weibull distribution pattern and those based on maximum availabi-lity,the results of this method indicate that its higher prediction accuracy is of great significance in preventive maintenance for equipment.
作者
张玎
于世胜
孔光明
杨振
梁佐堂
ZHANG Ding;YU Shisheng;KONG Guangming;YANG Zhen;LIANG Zuotang(Qingdao Branch,Naval Aviation Univ.,Qingdao 266041,China;Unit No.92212,Qingdao 266002,China)
出处
《海军工程大学学报》
CAS
北大核心
2023年第6期98-105,共8页
Journal of Naval University of Engineering
关键词
RBF神经网络
预防性维修
间隔期
装备可靠性
RBF neural network
preventive maintenance
intervals
equipment reliability