期刊文献+

基于RBF神经网络的装备预防性维修时间间隔预测

Preventive maintenance interval prediction of equipment based on RBF neural network
下载PDF
导出
摘要 针对装备系统维修工作的时间间隔确定问题,提出了基于RBF神经网络分析模型的装备预防性维修时间间隔的方法。通过构建以预防性维修时间、故障修复性维修时间、系统可靠度为输入,以维修时间间隔为输出的RBF神经网络模型,可准确地实现维修时间间隔的确定。将该方法结果与基于双参数威布尔分布规律以及基于最大可用度的预测结果进行了对比,结果表明:所提方法具有更高的预测精度,在针对装备的预防性维修中具有重大意义。 To solve the problem of determining the time interval of equipment system maintenance work,the method of equipment preventive maintenance time interval based on RBF neural network analysis model was proposed.The determination of maintenance intervals can be accurately achieved by constructing an RBF neural network model with preventive maintenance time,fault repair maintenance time and system reliability as inputs and maintenance intervals as outputs.In comparison with those based on the two-parameter Weibull distribution pattern and those based on maximum availabi-lity,the results of this method indicate that its higher prediction accuracy is of great significance in preventive maintenance for equipment.
作者 张玎 于世胜 孔光明 杨振 梁佐堂 ZHANG Ding;YU Shisheng;KONG Guangming;YANG Zhen;LIANG Zuotang(Qingdao Branch,Naval Aviation Univ.,Qingdao 266041,China;Unit No.92212,Qingdao 266002,China)
出处 《海军工程大学学报》 CAS 北大核心 2023年第6期98-105,共8页 Journal of Naval University of Engineering
关键词 RBF神经网络 预防性维修 间隔期 装备可靠性 RBF neural network preventive maintenance intervals equipment reliability
  • 相关文献

参考文献14

二级参考文献131

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部