期刊文献+

扁平热管和液冷复合锂电池热管理性能分析 被引量:3

Thermal management performance analysis of lithium battery with flat heat pipe and liquid cooling
下载PDF
导出
摘要 汽车动力电池在充放电中会产生大量的热,这些热量如果不断积累会引发电池热失控。热管传热性能高,没有额外功耗。为了把锂电池的工作温度维持在最佳范围内,设计扁平热管和液冷结合的TMS(热管理系统)对电池进行散热。实验通过控制变量法研究2、3C放电速率和25、35℃的环境温度对TMS散热性能的影响,同时观察加快冷却液流速对TMS传热性能的影响。结果表明:基于扁平热管和液冷的TMS能将电池表面最高温度t_(max)控制在37℃内,相比自然对流降低了23.4℃,温差Δt均低于5℃。t_(max)和Δt均随着放电倍率的变大或环境温度的升高而变大,并且该TMS有最低超过81.74%的传热能力。表明扁平热管和液冷复合的TMS在高温和大电流下是可行且有效的。 Vehicle power batteries generate a lot of heat during charging and discharging.If the heat continues to accumulate,it will cause thermal runaway of the battery.The heat pipe has high heat transfer performance and no extra power consumption.In order to maintain the operating temperature of the lithium battery within an optimal range,a TMS(thermal management system)combining flat heat pipes and liquid cooling was designed to dissipate heat from the battery.The control variable method was used to study the influence of 2,3C discharge rate and 25,35℃ambient temperature on the heat dissipation performance of TMS.At the same time,the influence of accelerating the flow rate of coolant on the heat transfer performance of TMS was observed.The results show that the TMS based on flat heat pipes and liquid cooling can control the maximum surface temperature of the battery within 37℃,which is 23.4℃lower than that of natural convection,and the temperature difference is lower than 5℃.Both t_(max)andΔt increase with the increase of the discharge rate or ambient temperature,and the TMS has a minimum heat transfer capacity of more than 81.74%.It shows that the TMS combined with flat heat pipe and liquid cooling is feasible and effective at high temperature and high current.
作者 金志浩 袁奇 韩振南 薛丰 JIN Zhihao;YUAN Qi;HAN Zhennan;XUE Feng(School of Mechanical and Power Engineering,Shenyang University of Chemical Technology,Shenyang 110000,Liaoning Province,China;Institute of Industrial Chemistry and Energy Technology,Shenyang University of Chemical Technology,Shenyang 110000,Liaoning Province,China)
出处 《化学工程》 CAS CSCD 北大核心 2023年第12期41-45,共5页 Chemical Engineering(China)
基金 国家自然科学基金委新疆联合基金资助项目(U190310)。
关键词 锂离子电池 扁平热管 电池热管理 液冷 传热性能 lithium-ion battery flat heat pipe battery thermal management liquid cooling heat transfer performance
  • 相关文献

参考文献2

二级参考文献119

  • 1安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术,2006,30(1):70-73. 被引量:22
  • 2戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 3孙志坚,王立新,王岩,吴存真,岑可法.重力型热管散热器传热特性的实验研究[J].浙江大学学报(工学版),2007,41(8):1403-1405. 被引量:7
  • 4谭维炽,胡金刚.航天器系统工程[M].北京:科学技术出版社,2009.
  • 5LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [ J ]. Journal of Power Sources, 2013, 226: 272-288.
  • 6STUART T, FANG F, WANG X, et al. A modular bat- tery management system for HEVs [ C~. In Proceedings of the SAE Future Car Congress, Arlington, VA, USA, 2002 : 1-9.
  • 7GOEBEL K, SAHA B, SAXENA A, et al. Christophers- en prognostics in battery health management [ J ]. IEEE Instrumentation and Measurement Magazine, 2008, 11 (4) : 33-40.
  • 8WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion bat- tery reliability[ J]. Energies, 2013, 6 (9) : 4682-4695.
  • 9JOHNSON S B, GORMLEY T J, KESSLER S S, et al. sys- tem health management with aerospaoce applications [ M ]. United Kingdom: John Wiley & Sons, Ltd, West Sussex, 2011.
  • 10ZHANG J, LEE J. A review on prognostics and health monitoring of Li-ion battery [ J ]. Journal of Power Sources, 2011, 196 (15) : 6007-6014.

共引文献195

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部