摘要
目的 分析重症加强护理病房(ICU)老年机械通气患者呼吸机相关性肺炎(VAP)的影响因素,并构建风险预测模型。方法 312例ICU老年机械通气患者,据患者在入院机械通气治疗期间是否发生VAP分为发生VAP组(36例)和未发生VAP组(276例)。采用队列研究的方法统计分析VAP现状,采用单因素及多因素Logistic回归分析其影响因素并构建ICU老年机械通气患者VAP风险预测模型。结果 312例老年机械通气患者,年龄60~87岁,平均年龄(67.86±13.45)岁;其中,男性178例,占比为57.05%,女性134例,占比为42.95%。312例老年机械通气患者中,住院期间有36例发生VAP,VAP发生率为11.54%。单因素分析结果显示:发生VAP组患者年龄、有慢性呼吸系统疾病占比、有吸烟史占比、长期卧床占比、长期使用质子泵抑制剂占比高于未发生VAP组,呼吸机使用时间长于未发生VAP组,差异有统计学意义(P<0.05);两组性别、婚姻状况、月收入、医保类型、高血压、糖尿病、上机前使用抗生素、长期使用H_(2)受体拮抗剂比较,差异无统计学意义(P>0.05)。多因素Logistic回归分析结果显示,年龄、有慢性呼吸系统疾病、吸烟、长期卧床、长期使用质子泵抑制剂、呼吸机使用时间长为VAP发生的独立危险因素(P<0.05)。据多元回归分析数据,将分类数据赋值:慢性呼吸系统疾病=X_(1);呼吸机使用时间=X_(2);既往吸烟=X_(3);长期卧床=X_(4);年龄=X_(5);长期使用质子泵抑制剂=X_(6);长期使用H_(2)受体拮抗剂=X7。赋值后现构建风险预测模型如下:Z=4.235+0.462X_(1)+0.562X_(2)+1.224X_(3)+0.368X_(4)+0.452X_(5)+0.482X_(6)+0.330X_(7)。结论 老年机械通气患者VAP发生率处于较高水平,年龄、有慢性呼吸系统疾病、吸烟、长期卧床、长期使用质子泵抑制剂、呼吸机使用时间长为VAP发生的独立危险因素。临床工作人员应及时评估患者是否可以撤机拔管,尽量减少呼吸机及质子泵抑制剂使用时间,按时翻身吸痰,最大程度减少VAP的发生。
Objective To analyze the factors affecting the occurrence of ventilator-associated pneumonia(VAP)in mechanically ventilated elderly patients in an intensive care unit(ICU),and construct a risk prediction model.Methods A total of 312 cases of mechanically ventilated elderly patients in ICU were divided into VAP group(36 cases)and no-VAP group(276 cases)according to whether the patients developed VAP during mechanical ventilation.The current status of VAP was analyzed statistically by cohort study,and the influencing factors were discussed by univariate and multivariate Logistic regression analysis,and the risk prediction model of VAP in mechanically ventilated elderly patients in ICU was established.Results 312 mechanically ventilated elderly patients aged 60-87 years,with a mean age of(67.86±13.45)years;among them,178 cases were male,accounting for 57.05%,and 134 cases were female,accounting for 42.95%.Among 312 mechanically ventilated elderly patients,36 cases developed VAP during hospitalization,and the incidence rate of VAP was 11.54%.The results of univariate analysis showed that age,proportion of chronic respiratory diseases,proportion of smoking history,proportion of prolonged bed rest and proportion of prolonged use of proton pump inhibitors in the VAP group were higher than those in the non-VAP group,and the duration of ventilator use was longer than that in the non-VAP group.The differences were statistically significant(P<0.05).There was no statistically significant difference between the two groups in terms of gender,marital status,monthly income,type of medical insurance,hypertension,diabetes,use of antibiotics before going on the ventilator and prolonged use of H_(2) receptor antagonists(P>0.05).Multivariate Logistic regression analysis showed that age,chronic respiratory diseases,smoking,prolonged bed rest,prolonged use of proton pump inhibitors,and long duration of ventilator use were independent risk factors for VAP(P<0.05).According to the multiple regression analysis data,the classified data were assigned:chronic respiratory diseases=X_(1),duration of ventilator use=X_(2),previous smoking=X_(3),prolonged bed rest=X_(4),age=X_(5),prolonged use of proton pump inhibitors=X_(6),prolonged use of H_(2) receptor antagonists=X_(7).After the assignment,the risk prediction model was constructed as follows:Z=4.235+0.462X_(1)+0.562X_(2)+1.224X_(3)+0.368X_(4)+0.452X_(5)+0.482X_(6)+0.330X7.Conclusion The incidence of VAP in mechanically ventilated elderly patients is at a high level.Age,chronic respiratory diseases,smoking,prolonged bed rest,prolonged use of proton pump inhibitors,and prolonged use of ventilators are independent risk factors for VAP.Clinical staff should timely evaluate whether off-ventilator and extubation,minimize the duration of ventilator use and proton pump inhibitors,turn over and sputum suction on time,and minimize the occurrence of VAP.
作者
王进
李玉侠
WANG Jin;LI Yu-xia(Department of Infection Management,Affiliated Hospital of Xuzhou Medical University,Xuzhou 221000,China)
出处
《中国实用医药》
2023年第23期52-56,共5页
China Practical Medicine
关键词
重症加强护理病房
机械通气
呼吸机相关性肺炎
风险预测模型
老年患者
Intensive care unit
Mechanical ventilation
Ventilator-associated pneumonia
Risk prediction model
Elderly patients