期刊文献+

Sludge composition and characteristics shaped microbial community and further determined process performance: A study on full-scale thermal hydrolysis-anaerobic digestion processes

原文传递
导出
摘要 Anaerobic digestion (AD) with thermal hydrolysis (TH) pretreatment is a promising process for excess sludge treatment,while there lacks of the knowledge from full-scale process about the impact of sludge composition and characteristics on microbial community and performance.The sludge physiochemical indices,microbial community and performance data of four full-scale TH-AD plants were characterized,and their relationships was elucidated.The four plants were operated under almost similar total organic loading rate (OLR)but their methanogenesis performance differentiate into two groups,namely superior group(SupG) and the inferior group (Inf G).In both groups,TH effectively solubilized particulate organic compounds,meanwhile raised the ammonia nitrogen (NH_(4)^(+)-N) and volatile fatty acid (VFA) concentration.Compared with the Sup G,thermal hydrolyzed sludge of Inf G had higher level of VFAs,NH_(4)^(+)-N and total chemical oxygen demand (t COD),which showed higher inhibition effect on microbes,leading to a community with lower diversity,lower abundance of carbohydrate degrading functional guild,higher protein degrading one,and methanogens that adapted to limited substrates,and further declined the methane production rate.Thus,it was recommended that OLR alone was not sufficient for controlling the system in design and operation,the concentration of VFAs,NH_(4)^(+)-N and t COD should be equally considered.Their higher concentration,together with the higher abundance of Defluviitoga and Proteiniphilum were recommended as indicators for inferior running condition.Our results proposed that microbial communities played a role of bridge between environmental factors and performance,provided implications for engineering ecology and operational regulation for full-scale sludge TH-AD process.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期96-107,共12页 环境科学学报(英文版)
基金 supported by the Major Program of National Natural Science Foundation of China (No. 52193268013)。
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部