期刊文献+

Amino acids modified nanoscale zero-valent iron:Density functional theory calculations,experimental synthesis and application in the Fenton-like degradation of organic solvents

原文传递
导出
摘要 To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期296-309,共14页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No.22176067)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部