摘要
为预测短视频用户行为(如:查看评论,点赞,点击头像,转发),考虑用户兴趣变化,将排序后的用户历史行为序列作为语料库引入Word2Vec训练得到词嵌入模型,学习用户的动态兴趣,有效捕获用户兴趣的变化。通过特征工程构建的统计特征与词嵌入模型构建的用户动态兴趣特征输入多任务模型,并提出一种新的评价指标来评估模型的预测精度。实验结果表明,相较于shared-bottom、Wide&Deep、DeepFM,提出的考虑用户兴趣变化的MMoE模型具有最优的预测精度。
The user behavior of short video(such as viewing comments,likes,clicking on avatars,and forwarding)is predicted by considering the change of user interests.In this paper,the sorted user historical behavior sequence is introduced into word2vec as a corpus to train the word embedding model,learn the dynamic interests of users,and effectively capture the changes in user interests.The statistical features constructed by feature engineering and the user dynamic interest features constructed by the word embedding model are input into the multi task learning with multi gate mixture of experts(MMOE),and a new evaluation index W-uAUC is proposed to evaluate the prediction accuracy of the model.The experimental results show that compared with shared bottom,wide&deep and deepfm,the proposed MMOE model considering the change of user interest has the best prediction accuracy.
作者
顾亦然
徐泽彬
杨海根
GU Yiran;XU Zebin;YANG Haigen(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Center of Smart Campus Research,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Center of Wider and Wireless Communication Technology,Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处
《复杂系统与复杂性科学》
CAS
CSCD
北大核心
2023年第4期69-76,共8页
Complex Systems and Complexity Science
基金
国防科工局基础科研项目(JCKY2019210B005,JCKY2018204B025,JCKY2017204B011)
国防重大工程项目(ZQ2019D20401)
装备发展部仿真预研课题(41401030301)。