期刊文献+

基于多任务与用户兴趣变化的短视频用户行为预测算法

Short Video User Behavior Prediction Algorithm Based on Multi-task and User Interest
下载PDF
导出
摘要 为预测短视频用户行为(如:查看评论,点赞,点击头像,转发),考虑用户兴趣变化,将排序后的用户历史行为序列作为语料库引入Word2Vec训练得到词嵌入模型,学习用户的动态兴趣,有效捕获用户兴趣的变化。通过特征工程构建的统计特征与词嵌入模型构建的用户动态兴趣特征输入多任务模型,并提出一种新的评价指标来评估模型的预测精度。实验结果表明,相较于shared-bottom、Wide&Deep、DeepFM,提出的考虑用户兴趣变化的MMoE模型具有最优的预测精度。 The user behavior of short video(such as viewing comments,likes,clicking on avatars,and forwarding)is predicted by considering the change of user interests.In this paper,the sorted user historical behavior sequence is introduced into word2vec as a corpus to train the word embedding model,learn the dynamic interests of users,and effectively capture the changes in user interests.The statistical features constructed by feature engineering and the user dynamic interest features constructed by the word embedding model are input into the multi task learning with multi gate mixture of experts(MMOE),and a new evaluation index W-uAUC is proposed to evaluate the prediction accuracy of the model.The experimental results show that compared with shared bottom,wide&deep and deepfm,the proposed MMOE model considering the change of user interest has the best prediction accuracy.
作者 顾亦然 徐泽彬 杨海根 GU Yiran;XU Zebin;YANG Haigen(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Center of Smart Campus Research,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Center of Wider and Wireless Communication Technology,Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2023年第4期69-76,共8页 Complex Systems and Complexity Science
基金 国防科工局基础科研项目(JCKY2019210B005,JCKY2018204B025,JCKY2017204B011) 国防重大工程项目(ZQ2019D20401) 装备发展部仿真预研课题(41401030301)。
关键词 行为预测 行为序列 Word2Vec MMoE 用户兴趣变化 W-uAUC behavior prediction behavior sequence Word2Vec MMoE user interest changes W-uAUC
  • 相关文献

参考文献4

二级参考文献107

  • 1Yi WANG,Dahua GAN,Ning ZHANG,Le XIE,Chongqing KANG.Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J].Journal of Modern Power Systems and Clean Energy,2019,7(5):1200-1209. 被引量:6
  • 2CR—Nielsen.CRNielsen发布2010年上半年中国互联网广告市场简报.http://www.cr—nielsen.com/wangluo/trend/201007/291758.html,2010.7.
  • 3eMarketer. Online Ad Spend Surpasses Newspapers. http://affiliate program, amazon, com/gp/advertising/api/ detail/main, html. 2010.12.
  • 4David Ogilvy. Ogilvy on Advertising. Vintage, 1985. 12.
  • 5Phillip Nelson. Advertising as information. The Journal of Political Economy, 1974, 82(4): 729 754.
  • 6新浪.新浪微博用户超过1亿,开始进军电子商务市场.http://tech.sina.com.cn/i/2011-03-02/17395237059.shtml.2011.3.
  • 7新浪.Twitter董事长称全球用户数已突破2亿.http://teeh.sina.com.cn/i/2011—01—12/17495087422.shtml,20l1.1.
  • 8eMrketer. Twitter ad revenues to soar this year. http:// wwwl. emarketer, com /Article. aspx?R= 1008192& AspxAutoDetectCookieSupport= 1, 2011.1.
  • 9Regelson M, Fain D. Predicting click through rate using keyword clusters//Proceedings of the 2nd Workshop on Sponsored Search Auctions. 2006.
  • 10Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Metzler D, Riedel L, Yuan J. Online expansion of rare queries for sponsored search//Proceedings of the SIGIR. 2009.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部