摘要
针对当前学者评价研究与实践中存在的准确性与全面性不足的问题,本文从颠覆性影响力的视角出发,基于引文网络的深层互引信息,将被引文献划分为颠覆性被引文献和巩固性被引文献,构建了学者影响力的二元测度框架,凝练出两种不同类型的学术特征,即“颠覆型学者”和“巩固型学者”,并提出颠覆性被引量和颠覆性h指数等指标用于学者影响力测度。实证研究基于APS(American Physical Society)数据集的463348篇论文、9370286条引证链接、234086位消歧后作者以及诺贝尔奖(Nobel Prize)、沃尔夫奖(Wolf Prize)、狄拉克奖(Dirac Medal)3种重要奖项得主数据,综合肯德尔秩相关性、识别比率、平均排名等方法进行指标一致性和收敛有效性分析。研究结果表明,颠覆性被引量和颠覆性h指数与传统指标高度一致,并且在收敛有效性上全面优于基准测度指标。颠覆性影响力能够反映学者的创新水平和潜力,二元测度框架可以对学者影响力进行准确划分,对未来创新科学家的早期识别、学者绩效与奖励制度的改革、基金项目的评审与评价、科研激励政策的制定等具有重要意义。
Using the rich mutual citation information in citation networks,the citation links of scientific papers can be categorized into two citation types:disruptive and consolidating.This study adopted a dual perspective to examine a scientists disruptive and consolidating impact and proposes a measurement framework that divides scientists into two academic characteristics.We can obtain valuable insights by condensing various types of scientists into these two categories.To evaluate the consistency and effectiveness of this framework,we conducted an empirical analysis using the American Physical Society(APS)dataset,which comprises 463,348 papers,9,370,286 citation links,and 234,086 post-disambiguated scholars.We employed Kendalls tau correlation,the identification proportion,and the average rank as evaluation metrics.The results indicate that disruptive citations and the disruptive h-index indicate a high consistency with traditional indices while surpassing benchmark indices in terms of the convergence efficiency.The disruptive influence of scientists serves as an indicator of their innovation level and potential.The dual measurement framework accurately and effectively captures the influence of scientists,providing a means for the early identification of future innovative researchers,reforming performance and reward systems,reviewing and evaluating funding projects,and formulating incentive policies for scientific research.
作者
杨杰
孔嘉
张艺炜
王昊
邓三鸿
Yang Alex J.;Kong Jia;Zhang Yiwei;Wang Hao;Deng Sanhong(School of Information Management,Nanjing University,Nanjing 210023;Jiangsu Key Laboratory of Data Engineering and Knowledge Service,Nanjing 210023)
出处
《情报学报》
CSSCI
CSCD
北大核心
2023年第12期1412-1423,共12页
Journal of the China Society for Scientific and Technical Information
基金
国家社会科学基金项目“大数据环境下学术成果真实价值与影响的实时预测及长期评价研究”(19BTQ062)。