期刊文献+

求解PFSP的集成多策略教学优化算法

Integrated Multi-Strategy Teaching-Learning-Based Optimization Algorithm for Solving PFSP
下载PDF
导出
摘要 在标准教学优化算法的基础上,提出一种集成多策略教学优化算法(IMTLBO)用于求解置换流水车间调度问题(PFSP)。为了生成具有一定质量和多样性的精英种群,初始种群的20%使用NEHLJP1算法生成,其余个体使用反向学习法产生;此外,教学阶段采用基于惯性权重的分组教学、正弦TF策略和变邻域搜索,学习阶段采用双学习策略;最后,通过双局部搜索来提高算法精度。为检验其有效性,在三类基准实例上进行实验,结果表明了IMTLBO相比其它算法具有显著的寻优能力。除此之外,针对汽车连杆部件制造的大规模生产问题进行求解,大幅缩短了完工时间,进一步表明了IMTLBO求解PFSP的有效性。 Based on the standard teaching-learning-based optimization algorithm,an integrated multi-strategy teaching-learning-based optimization algorithm(IMTLBO)is proposed to solve the permutation flow-shop scheduling problem(PFSP).In order to generate elite population with certain quality and diversity,20%of the initial population is generated using NEHLJP1 algorithm,and the rest individuals are generated using reverse learning method.In addition,group teaching based on inertia weight,sine TF strategy and variable neighborhood search are adopted in the teaching stage,and dual learning strategy is adopted in the learning stage.Finally,the accuracy of the algorithm is improved by double local search.In order to test its effectiveness,experiments are carried out on three benchmark instances.The results show that IMTLBO has significant optimization ability compared with other algorithms.In addition,solving the large-scale production problem of automobile connecting rod parts manufacturing has greatly shortened the completion time,further demonstrating the effectiveness of IMTLBO in solving PFSP.
作者 亓祥波 马志强 王宏伟 QI Xiangbo;MA Zhiqiang;WANG Hongwei(School of Mechanical Engineering,Shenyang University,Shenyang 110044,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第12期34-39,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 辽宁省教育厅高等学校基本科研项目(LJKQZ2021164)。
关键词 置换流水车间调度 教学优化算法 精英初始化 双局部搜索 基准实例 permutation flow-shop scheduling problem teaching-learning-based optimization algorithm elite initialization double local search benchmark instance
  • 相关文献

参考文献5

二级参考文献44

  • 1杨青,钟守楠,丁圣超.简单量子进化算法及其在数值优化中的应用[J].武汉大学学报(理学版),2006,52(1):21-24. 被引量:7
  • 2杨淑媛,焦李成,刘芳.量子进化算法[J].工程数学学报,2006,23(2):235-246. 被引量:34
  • 3MURATA T, ISHIBUCHI H, TANAKA H. Multi-objective genetic algorithm and its application to flow-shop scheduling [J ]. Computers & Industrial Engineering, 1996, 30 ( 4 ) : 957-968.
  • 4RAJENDRAN C, ZIEGLER H. Ant-colony algorithms for pe- rmutation flowshop scheduling to minimize makespan/total flowtime of jobs [J]. European Journal of Operational Re- search,2004,155(2) :426-438.
  • 5LIAO C J, TSENG C T, LUARN P. A discrete version of pa- rticle swarm optimization for flowshop scheduling problems [J]. Computers & Operations Research, 2007, 34 (10): 3099-3111.
  • 6ENGIN O, DOYEN A. A new approach to solve hybrid flow shop scheduling problems by artificial immune system[J].Fu- ture Generation Computer Systems, 2004,20(6) : 1083-1095.
  • 7SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]//Proceeding of the 35th Annual Symposium on Foundations of Computer Science. Piscataway, N.J. ,USA:IEEE Press,1994,11:124-134.
  • 8GROVER L K. A fast quantum mechanical algorithm for data- base search[C]//Proceedings of the 28th ACM Symposium: Theory of Computing. New York, N. Y. , USA: ACM, 1996: 212-221.
  • 9NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms[C]//Proceeding of IEEE Congress on Evolution- ary Computation. Washington, D. C., USA: IEEE, 1996: 61-66.
  • 10HAN K H, KIM J H. Quantum-inspired evolutionary algo- rithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 ( 6 ) : 580-593.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部