期刊文献+

基于迭代和扰动观测的间隙实时补偿控制研究

Research on Real-Time Clearance Compensation Control Based on Iterative and Disturbance Observation
下载PDF
导出
摘要 针对电动伺服加载系统中传动间隙对加载力的影响,提出了一种基于迭代学习和非线性扰动观测器的滑模控制策略(SMC-ILC&NDOB)。通过迭代算法对传动间隙进行估计,同时利用扰动观测器对间隙的估计值进行补偿,在此基础上设计滑模控制器实现间隙的在线补偿,并根据Lyapunov稳定性定理证明了整个闭环控制系统的稳定性。借助MATLAB/Simulink软件对电动伺服加载系统和控制器进行仿真实验,对PID算法和基于迭代算法和扰动观测器的滑模控制方法进行对比。结果显示基于迭代学习和扰动观测器的滑模控制方法对传动间隙有着不错的补偿效果并拥有较好的鲁棒性。 In this paper,a sliding mode control strategy based on iterative learning and nonlinear disturbance observer(SMC-ILC&NDOB)is proposed for the influence of transmission clearance on the output of electric servo loading system.The clearance is estimated by iterative learning,and the estimated value of the clearance is compensated by nonlinear disturbance observer.On this basis,a sliding mode controller is designed,and the stability of this system is proved by Lyapunov stability theorem.The simulation experiments of the electric servo loading system and controller are carried out by MATLAB/Simulink software.The PID and SMC-ILC&NDOB are compared.And results show that the SMC-ILC&NDOB has weak vibration during the process of the device crossing the clearance,but it can reach the stability faster.When the system is disturbed,SMC-ILC&NDOB is more robust than PID.
作者 桑勇 郭联龙 蒋路明 廖连杰 SANG Yong;GUO Lianlong;JIANG Luming;LIAO Lianjie(School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第12期81-84,88,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家重点研发计划项目(2020YFB1709903) 国家自然科学基金项目(51975082)。
关键词 电动伺服加载系统 传动间隙补偿 扰动观测器 迭代学习 滑模控制 electric powered servo load system transmission clearance compensation nonlinear disturbance observer iterative learning control sliding mode control
  • 相关文献

参考文献5

二级参考文献58

  • 1杨文强,蔡旭,姜建国.矢量控制系统的积分型滑模变结构速度控制[J].上海交通大学学报,2005,39(3):426-428. 被引量:25
  • 2贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制[J].电工技术学报,2006,21(1):1-6. 被引量:98
  • 3赵国峰,樊卫华,陈庆伟,胡维礼.齿隙非线性研究进展[J].兵工学报,2006,27(6):1072-1080. 被引量:40
  • 4TAO G, KOKOTOVIC P V. Adaptive control of systems with backlash[J]. Automatica, 1993, 29(2): 323 - 335.
  • 5GRUNDELIUS M, ANGELI D. Adaptive control of systems with backlash with backlash acting on the input[C]//IEEE Conference on Decision and Control. Kobe, Japan: IEEE Press, 1996:4689 - 4694.
  • 6TAO G, MA X, LING Y. Optimal and nonlinear control of systems with sandwiched backlash[J]. Automatica, 2001, 37(2): 165 - 176.
  • 7GEBLER D, HOLTZ J. Identification and compensation of gear backlash without output position sensor in high-precision servo systems[C]//Proceedings of the 21st Annual Conference on Industrial Electronics Society. Aachen, German: IEEE Press, 1998, 2:662 - 666.
  • 8ZHAO T. Adaptive control for nonlinear systems with unknown hysteresis via inverse dynamics[C]//IEEE International Conference on Information Acquision. Weihai, China: IEEE Press, 2006, 2:910 - 915.
  • 9ZHOU J, ZHANG C Y, WEN C Y. Robust adaptive output control of uncertain nonlinear plants with unknown basklash nonlinearity[J]. IEEE Transactions on Automatic Control. 2007, 52(3): 503 - 509.
  • 10SU C Y, TAN Y H, STEPANENKO Y. Adaptive control of a class of nonlinear systems preceded by an unknown backlash-like hysteresis[ C]//IEEE Conference on Decision and Control. Sydney, Australia: IEEE Press, 2000, 2:1459 -1464.

共引文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部