期刊文献+

基于APSO的GIS腔体移动机器人区间二型模糊跟踪控制

INTERVAL TYPE-2 FUZZY TRACKING CONTROL OF GIS CAVITY MOBILE ROBOT BASED ON APSO
下载PDF
导出
摘要 为解决气体绝缘封闭开关设备(GIS)腔体移动机器人的轨迹跟踪控制问题,提出一种基于优化算法的麦克纳姆轮全向移动机器人(MWOR)区间二型模糊跟踪系统。建立MWOR在腔体中的非线性模型,并设计相应的区间二型模糊逻辑控制器(IT2FLC);针对IT2FLC隶属度函数难以确定的问题,采用自适应粒子群优化(APSO)算法对隶属度函数进行优化。分别对MWOR在无扰动和有扰动时进行直线和圆轨迹跟踪的仿真实验。结果表明,该方法对MWOR具有很好的控制效果和抗干扰效果。 In order to solve the trajectory tracking control problem of gas insulated switchgear(GIS)cavity mobile robot,an interval type-2 fuzzy tracking system for Mecanum wheeled omnidirectional mobile robot(MWOR)based on optimization algorithm is proposed.The nonlinear model of MWOR in the cavity was established,and the corresponding interval type-2 fuzzy logic controller(IT2FLC)was designed.The membership function was optimized by adaptive particle swarm optimization(APSO)to solve the problem that membership function of IT2FLC was difficult to determine.The simulation experiments of MWOR on straight-line and circular trajectory tracking were carried out under the condition of no disturbance and disturbance respectively.The results show that the method has good control effect and anti-interference effect for MWOR.
作者 任江涛 佃松宜 郭斌 赵涛 蒋宗池 Ren Jiangtao;Dian Songyi;Guo Bin;Zhao Tao;Jiang Zongchi(School of Electrical Engineering,Sichuan University,Chengdu 610065,Sichuan,China)
出处 《计算机应用与软件》 北大核心 2023年第12期70-78,共9页 Computer Applications and Software
基金 国家重点研发计划项目(2018YFB1307401)。
关键词 MWOR 粒子群优化 隶属度函数 区间二型模糊逻辑控制 跟踪控制 MWOR Particle swarm optimization Membership function Type-2 fuzzy logic controller Tracking control
  • 相关文献

参考文献7

二级参考文献38

  • 1刘磊,许晓鸣.带Mecanum轮的移动机器人全向移动控制研究[J].系统工程理论与实践,2011,31(S1):66-72. 被引量:11
  • 2吕广明,孙立宁,唐余勇.五自由度上肢康复机器人的运动学逆解[J].黑龙江大学自然科学学报,2007,24(1):54-57. 被引量:4
  • 3Molina-Lozano H. A new fast fuzzy Cocke-Younger-Kasami algorithm for DNA strings analysis[ J]. International Journal Machine Learning and Cybernetics,2011,2(3) :209 -218.
  • 4Wang X Z, He Y L, Dong L C, et al. Particle swarm optimization for determining fuzzy measures from data [ J ]. Information Sciences,2011,181 ( 19 ) :4230 - 4252.
  • 5Wu J, Wang S T, Chung F L. Positive and negative fuzzy mle system, extreme learning machine and image classification [ J ]. International Journal Machine Learning and Cybernetics,2011,2 (4) : 261 - 271.
  • 6Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning--I [ J ]. Information Sciences, 1975,8 ( 3 ) : 199 - 249.
  • 7Hagras H. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots [J]. IEEE Transactions on Fuzzy Systems ,2004,12 (4) :524 -539.
  • 8Lin F J, Chou P H. Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network [ J ]. IEEE Transactions on Industrial Electronics, 2009,56 (1) :178 -193.
  • 9Melin P, Mendoza O, Castillo O. An improved method for edge detection based on interval type-2 fuzzy logic [ J ]. Expert Systems with Applications, 2010, 37 ( 12 ) : 8527 - 8535.
  • 10Choi B I, Frank C H R. Interval type-2 fuzzy membership function generation methods for pattern recognition [J]. Information Sciences ,2009,179:2102 - 2122.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部