期刊文献+

混合型抗机器学习攻击的强PUF电路设计 被引量:1

Design of Hybrid Strong PUF Circuit Against Machine Learning Attacks
下载PDF
导出
摘要 物理不可克隆函数(Physical Unclonable Function, PUF)作为一种面向硬件的安全原语,在资源受限的物联网设备中具有广泛的应用前景,但其安全性也受到机器学习攻击的威胁。通过对抗电路结构攻击和机器学习攻击等方法的研究,提出混合型抗电路结构攻击的新型PUF电路。首先,构造两个并行且对称设置的仲裁器PUF(Arbiter PUF, APUF),并将两个APUF输出进行异或,得到1位PUF响应输出;然后,为两个APUF引入前馈回路,实现输入激励集动态调整,确保结构非线性,防御建模攻击;最后,将两个并行APUF开关单元的输出对应交叉,使后级开关单元输入激励相互倒置,扩大信号延时路径选择范围,提高输出响应随机特性。该PUF采用现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)实现,测试结果表明:即使机器学习训练所用激励响应对数量达105,采用传统机器学习进行模型攻击,预测率仍接近50%理想值,且PUF电路的随机性、唯一性和稳定性等性能指标均表现良好,具备实际应用价值。 As a hardware oriented security primitive,physical unclonable function(PUF)has a wide application prospect in resource limited Internet of things devices,but its security is also threatened by machine learning attacks.Therefore,by the research on anti-attack circuit structures and machine learning attacks,a novel hybrid anti circuit structure,PUF circuit,is proposed to resist circuit structure attacks.Firstly,two parallel and symmetrically arranged arbiter PUFs(arbiter PUF,APUF)are constructed,and the two APUF outputs are conducted by XOR to obtain a 1-bit PUF response output.Then,a feed forward loop is introduced for the two APUFs to dynamically adjust the input excitation sets,ensuring structural nonlinearity and defending against modeling attacks.Finally,the outputs of two parallel APUF switching units are correspondingly crossed to invert the input excitation of the subsequent switching units,expand the range of signal delay path selection,and improve the random characteristics of output response.The PUF is implemented by using FPGA,and the test results show that even if the number of excitation response pairs used for machine learning training reaches 105,the prediction rate is still close to 50%of the ideal value when using traditional ML for model attack,and the performance indicators of the PUF circuit such as randomness,uniqueness and stability are all good,which has practical application value.
作者 翟官宝 汪鹏君 李刚 庄友谊 ZHAI Guanbao;WANG Pengjun;LI Gang;ZHUANG Youyi(College of Electrical and Electronic Engineering,Wenzhou University,Wenzhou 325035,Zhejiang,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期854-861,共8页 Journal of East China University of Science and Technology
基金 国家自然科学基金(62234008,62174121,61871244) 温州市基础性科研项目(G20210023)。
关键词 混合型 强PUF 抗机器学习攻击 硬件安全 电路设计 mixed type strong PUF resistance to machine learning attacks hardware security circuit design
  • 相关文献

参考文献3

二级参考文献17

共引文献173

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部