期刊文献+

基于自适应连续时间的群智感知轨迹隐私保护方案

Track Privacy Protection Scheme Based on Adaptive Continuous Time in Crowdsensing
下载PDF
导出
摘要 针对轨迹差分隐私保护存在的预测精度差、隐私预算分配效用低的问题,本文提出自适应连续时间序列下的群智感知轨迹预测方案.首先在任务分配阶段,为参与者分配轨迹路线;其次引入隐马尔可夫模型(Hidden Markov Model,HMM),对轨迹进行预测;然后使用预分配和自适应分配相结合的综合隐私预算分配方法,降低隐私预算;最后利用拉普拉斯机制,进行位置扰动.实验结果表明,与相关工作相比,所提方法兼顾预测性和低预算性,对群智感知中参与者在轨迹隐私安全保护上具有良好的保护效果. In response to the problems of poor prediction accuracy and low utility of privacy budget allocation in tra⁃jectory differential privacy protection,our paper proposes an adaptive trajectory prediction scheme for continuous time se⁃ries in crowdsensing.Firstly,in the task assignment phase,trajectory routes are assigned to participants.Then,the HMM(Hidden Markov Model)is introduced to predict the trajectories.Next,a comprehensive privacy budget allocation method combining pre-allocation and adaptive allocation is used to reduce the privacy budget.Finally,the laplace mechanism is ap⁃plied to perturb the locations.Experimental results show that compared with related work,the proposed method achieves a balance between prediction accuracy and low budget requirements,and provides good privacy protection for participants in trajectory privacy security in crowdsensing.
作者 蒋伟进 王海娟 周为 陈艺琳 吴玉庭 韩裕清 JIANG Wei-jin;WANG Hai-juan;ZHOU Wei;CHEN Yi-lin;WU Yu-ting;HAN Yu-qing(College of Frontier Intersection,Hunan University of Technology and Business,Changsha,Hunan 410205,China;School of Computer Science and Artificial Intelligence,Wuhan University of Technology,Wuhan,Hubei 430070,China;Xiangjiang Laboratory,Changsha,Hunan 410205,China;School of Computer Science,Hunan University of Technology and Business,Changsha,Hunan 410205,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2894-2901,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61772196,No.72088101)。
关键词 轨迹预测 差分隐私 综合性隐私预算分配 自适应连续时间 群智感知 trajectory prediction differential privacy comprehensive privacy budget allocation adaptive continuous time crowdsensing
  • 相关文献

参考文献2

二级参考文献19

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部