摘要
在保证轨迹数据发布隐私性的同时,需要提高发布数据的可用性,将机器学习算法应用于轨迹数据处理可以提高轨迹数据的可用性。针对轨迹数据发布可用性问题,提出一种面向轨迹数据发布的结合双向门控循环单元(bidirectional gated recurrent unit,BIGRU)和差分隐私(differential privacy,DP)的轨迹隐私保护方案。通过应用BIGRU对轨迹数据进行预处理从而提高轨迹数据的可用性,对轨迹数据进行聚类泛化并使用差分隐私指数机制进行分区选择从而达到了隐私保护的目的,将得到的泛化轨迹数据集进行异常处理并发布。仿真实验结果表明,该方案不仅具有较好的数据可用性,也有一定的效率优势。
While ensuring the privacy of trajectory data publication,it is necessary to improve the usability of the published data.Applying machine learning algorithms to trajectory data processing can improve the usability of trajectory data.A trajectory privacy protection scheme is proposed to solve the usability problem in trajectory data publishing,which combines bidirectional gated recurrent unit(BIGRU)and differential privacy(DP)for trajectory data publishing.Firstly,by applying BIGRU to preprocess trajectory data,the usability of trajectory data is improved.Then,the trajectory data is clustered and generalized,and a differential privacy index mechanism is used for partition selection to achieve privacy protection.Finally,the obtained generalized trajectory data set is subjected to exception handling and then gets published.Simulation results show that this scheme not only has good data usability,but also has certain efficiency advantages.
作者
申艳梅
张玉阳
申自浩
王辉
刘沛骞
SHEN Yanmei;ZHANG Yuyang;SHEN Zihao;WANG Hui;LIU Peiqian(School of Software,Henan Polytechnic University,Jiaozuo 454000,P.R.China;School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,P.R.China)
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2023年第6期1011-1019,共9页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
国家自然科学基金项目(61300216)
河南省高等学校重点科研项目(23A520033)
河南理工大学博士基金项目(B2022-16)。
关键词
差分隐私
轨迹数据发布
神经网络
轨迹预测
隐私保护
differential privacy
trajectory data publishing
neural network
trajectory prediction
privacy protection