期刊文献+

面向海量业务场景的网络智能流量调度算法研究 被引量:2

Research on network intelligent traffic scheduling algorithm undermassive traffic environment
下载PDF
导出
摘要 为解决海量业务场景下传统路由策略计算成本高、容易导致网络拥塞等问题,以最小化最大链路利用率为目标,提出一种网络智能流量调度算法以实现业务流的高效传输。基于业务量矩阵等网络实时状态,采用启发式算法计算当前网络状态下最优的流量调度方案;采用反向传播(back propagation,BP)神经网络构建网络智能流量调度模型,并根据网络实时状态与流量调度方案的映射关系对网络智能流量调度模型进行离线训练。在网络运行阶段,采用网络智能流量调度模型实时对业务流进行调度。实验验证表明,所提算法相比于传统启发式路由策略,最大链路利用率、平均时延、最大丢包率等指标都有较大提升。 With the deep integration of the Internet and society,a large number of emerging services have been introduced into the network.To solve the problem of high calculation cost of traditional routing policies and network congestion under massive traffic environment,a network intelligent traffic scheduling algorithm is proposed to realize the efficient transmission of traffic flow to minimize the maximum link utilization.Firstly,according to the traffic matrix,heuristic algorithms are used to calculate the optimal traffic scheduling scheme based on current network status.Secondly,back propagation neural network is used to construct the network intelligent scheduling model,and the traffic scheduling model is trained offline according to the mapping relationship between network states and traffic scheduling scheme.In the network operation stage,the intelligent network traffic scheduling model is used to schedule traffic flows in real time.Experimental verification shows that,compared to traditional heuristic routing strategies,the proposed algorithm has significantly improved indicators such as maximum link utilization,average latency,and maximum packet loss.
作者 杜林峰 崔金鹏 章小宁 DU Linfeng;CUI Jinpeng;ZHANG Xiaoning(School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第6期1062-1071,共10页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金项目(62171085,62001087,U20A20156,61871097) 之江实验室开放课题(2021LC0AB04)。
关键词 流量调度 网络路由 神经网络 负载均衡 traffic scheduling network routing neural network load balancing
  • 相关文献

参考文献2

二级参考文献11

共引文献18

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部