期刊文献+

基于图模型与注意力机制的室外场景点云分割模型

Outdoor scene point cloud segmentation model based on graph model and attention mechanism
下载PDF
导出
摘要 针对在多对象且空间拓扑关系复杂的室外场景环境中相似地类区分难的问题,提出一种结合图模型与注意力机制模块的A-Edge-SPG(Attention-EdgeConv SuperPoint Graph)图神经网络。首先,利用图割和几何特征结合的方法对超点进行分割;其次,在超点内部构造局部邻接图,从而在捕获场景中点云的上下文信息的同时利用注意力机制模块凸显关键信息;最后,构建超点图(SPG)模型,并采用门控循环单元(GRU)聚合超点和超边特征,实现对不同地类点云间的精确分割。在Semantic3D数据集上对A-Edge-SPG模型和SPG-Net(SPG neural Network)模型的语义分割效果进行比较分析。实验结果表明,相较于SPG模型,A-Edge-SPG模型在总体分割精度(OA)、平均交并比(mIoU)和平均精度均值(mAA)上分别提升了1.8、5.1和2.8个百分点,并且在高植被、矮植被等相似地类的分割精度上取得了明显的提升,改善了相似地类间语义分割的效果。 Aiming at the problem that it is difficult to distinguish similar land types in outdoor scenes with multiple objects and complex spatial topological relationships,an A-Edge-SPG(Attention-EdgeConv SuperPoint Graph)graph neural network combining graph model and attention mechanism module was proposed.Firstly,the superpoints were segmented by the combination of graph cut and geometric features.Secondly,the local adjacency graph was constructed inside the superpoint to capture the context information of the point cloud in the scene and use the attention mechanism module to highlight the key information.Finally,a SuperPoint Graph(SPG)model was constructed,and the features of hyperpoints and hyperedges were aggregated by Gated Recurrent Unit(GRU)to realize accurate segmentation among different land types of point cloud.On Semantic3D dataset,the semantic segmentation effect of A-Edge-SPG model and SPG-Net(SPG neural Network)model was compared and analyzed.Experimental results show that compared with the SPG model,A-Edge-SPG model improves the Overall segmentation Accuracy(OA),mean Intersection over Union(mIoU)and mean Average Accuracy(mAA)by 1.8,5.1 and 2.8 percentage points respectively,and significantly improves the segmentation accuracy of similar land types such as high vegetation and dwarf vegetation,improving the effect of distinguishing similar land types.
作者 廉飞宇 张良 王杰栋 靳于康 柴玉 LIAN Feiyu;ZHANG Liang;WANG Jiedong;JIN Yukang;CHAI Yu(Faculty of Resources and Environmental Science,Hubei University,Wuhan Hubei 430062,China;Hubei Key Laboratory of Regional Development and Environmental Response(Hubei University),Wuhan Hubei 430062,China;The Second Institute of Surveying and Mapping of Zhejiang Province,Hangzhou Zhejiang 310012,China)
出处 《计算机应用》 CSCD 北大核心 2023年第12期3911-3917,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(41601504) 高分辨率对地观测系统重大专项(11-H37B02-9001-19/22)。
关键词 语义分割 室外场景 局部特征 注意力机制模块 局部邻接图 图模型 semantic segmentation outdoor scene local feature attention mechanism module local adjacency graph graph model
  • 相关文献

参考文献11

二级参考文献88

  • 1刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 2隋立春,张宝印.Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129. 被引量:54
  • 3MONGUS D, ALIK B. Parameter free Ground Filtering of I.iDAR Data for Automatic DTM Generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67 (1):1-12.
  • 4MUNOZ D, BAGNELL J A, et al. Contextual Classification with Functional Max-Margin Markov Networks [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:975-982.
  • 5ZHANG J X, LIN X G. Object based Classification of Urban Airborne LiDAR Point Clouds with Multiple Echoes using SVM[C] // Proceedings of ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne:[s. n. ], 2012: 248-253.
  • 6NIEMEYER J, WEGNER J D, MALLET C, et al. Conditional Random Fields for Urban Scene Classification with Full Waveform LiDAR Data [M]. Photogrammetric Image Analysis. Berlin:Springer, 2011: 233-244.
  • 7CHEHATA N, GUO L. Airborne LiDAR Feature Selec- tion for Urban Classification Using Random Forests [C] // Proceedings of Laser Scanning 2009. Paris : IAPRS, 1999 :207-212.
  • 8MALLET C, BRETAR F. Relevance Assessment of Full waveform LiDAR Data for Urban Area Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 71-84.
  • 9HUANG Xianfeng, SOHN G. A Competition Based Roof Detection Algorithm from Airborne LiDAR Data [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37 (3): 319-324.
  • 10WAGNER W, HOLLAUS M. 3D Vegetation Mapping Using Small-footprint Full-waveform Airborne Laser Scanners [J]. International Journal of Remote Sensing, 2008, 29(5): 1433-1452.

共引文献1040

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部