期刊文献+

基于FCM-ELM-BBPS的预测控制参数整定

Predictive Control Parameter Tuning Algorithm Based on FCM-ELM-BBPS
下载PDF
导出
摘要 模型预测控制设计参数选择显著影响被控系统性能,目前基于专家经验的主流参数整定方法会出现控制器鲁棒性差、计算成本高等缺点.为了解决上述问题,提出一种基于模糊C均值-极限学习机-裸骨粒子群(Fuzzy C-means-Extreme Learning Machine-Bare Bones Particle Swarm,FCM-ELM-BBPS)的参数整定算法.通过模糊C均值算法(Fuzzy C-means,FCM)聚类进行数据预处理,将被控系统复杂数据根据自身特征进行聚类,以降低神经网络的训练误差,提高预测精度;针对每一类特征数据,利用极限学习机(Extreme Learning Machine,ELM)建立预测控制参数与性能指标的映射关系模型,并进一步获得参数整定规则;采用裸骨粒子群(Bare Bones Particle Swarm,BBPS)优化算法进行预测控制参数整定,通过采用高斯分布来更新粒子位置,加快目标函数的收敛速度,从而有效地减少参数寻优时间;分别进行仿真和水箱系统实验验证,证明了提出算法的有效性.实验结果表明,本文提出的算法与现有方法相比,更具有优越性,其中整定时间减少了34.84%,同时在调整时间等时域性能指标上提升了43.98%. The design parameter selection of model predictive control significantly affects the performance of the controlled system.The current mainstream parameter tuning methods based on expert experience have the disadvan-tages of poor controller robustness and high calculation cost.To solve the above problems,this paper proposes a pa-rameter tuning algorithm based on Fuzzy C-means-Extreme Learning Machine-Bare Bones Particle Swarm(FCM-ELM-BBPS).Firstly,Fuzzy C-means(FCM)clustering is used to preprocess the data,and the complex data of the controlled system is clustered according to its own characteristics,so as to reduce the training error of the neural net-work and improve the prediction accuracy.Secondly,for each kind of characteristic data,the Extreme Learning Ma-chine(ELM)was used to establish the mapping relationship model between predictive control parameters and perfor-mance indices,and the parameter tuning rules were further obtained.Then the Bare Bones Particle Swarm(BBPS)optimization algorithm is used to tune the predictive control parameters.The Gaussian distribution is adopted to up-date the particle position,which accelerats the convergence of the objective function and effectively reducs the pa-rameter optimization time.Finally,simulation and experiment of the water tank system are carried out respectively to prove the effectiveness of the proposed algorithm.Experimental results show that,compared with existing methods,the proposed algorithm has more advantages,in which the tuning time is reduced by 34.84%,and the time domain performance indices such as the adjustment time are improved by 43.98%.
作者 贺宁 习坤 高峰 刘月笙 HE Ning;XI Kun;GAO Feng;LIU Yuesheng(School of Mechanical and Electrical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第12期168-177,共10页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61903291) 陕西省重点研发计划项目(2022NY-094)。
关键词 模型预测控制 聚类 极限学习机 裸骨粒子群 参数整定 model predictive control clustering extreme learning machine bare bones particle swam param-etertuning
  • 相关文献

参考文献7

二级参考文献51

  • 1崔巍,王长德,管光华,范杰.渠道运行管理自动化的多渠段模型预测控制[J].水利学报,2005,36(8):1000-1006. 被引量:19
  • 2李志军,刘吉臻,谭文.饱和约束系统的鲁棒模型预测控制[J].控制与决策,2006,21(6):641-645. 被引量:9
  • 3陈虹丽,兰海,沈毅.基于π型舵船舶减纵摇广义预测控制研究[J].系统仿真学报,2006,18(12):3508-3511. 被引量:3
  • 4陈秋霞,俞立.不确定离散时滞系统的输出反馈鲁棒预测控制[J].控制理论与应用,2007,24(3):401-406. 被引量:9
  • 5Bai X L, Junkins .l L. New results for time-optimal three-axis reorientation of a rigid spacecraft [ J ]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1071 -1076.
  • 6Hu Q L, Ma G F. Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity[ J]. Automatica, 2008, 44 (2) : 552 - 559.
  • 7Kim K S, Kim Y. Robust backstepping control for slew maneuver using nonlinear tracking function [ J ]. IEEE Transaction on Control System Technology, 2003, 11 (6) : 822 - 829.
  • 8Show L L, Juang J C, Lin C T, Jan Y W. Spacecraft robust attitude tracking design: PID control approach [ C ]. The American Control Conference, Anchorage, AK, May 8 - 10, 2002.
  • 9All I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver [ J ]. Journal of Guidance, Control, and Dynamics, 2010, 33 ( 1 ) :254 - 258.
  • 10Gong Q, Fahroo F, Ross I M. Spectral algorithm for pseudospectral methods in optimal control [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31(3) : 460 -471.

共引文献487

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部